Simulasi Dinamika Gelombang Berjalan Pada Model Invasi Tumor
DOI:
https://doi.org/10.15575/kubik.v2i1.1470Keywords:
sel tumor, haptotaksis, gelombang berjalan, matriks ekstraseluler, metode runge-kuttaAbstract
Invasi adalah penjalaran sel tumor ke daerah sekitarnya yang menimbulkan kerusakan pada jaringan di sekitarnya. Penelitian ini menganalisis proses keberhasilan invasi sel tumor dengan cara menginvestigasi keberadaan solusi gelombang berjalan pada model haptotaksis sel tumor ganas dengan tidak mengabaikan proses difusi. Model tersebut diselesaikan secara numerik menggunakan metode Runga-Kutta Orde 4 untuk mengetahui dinamika gelombang berjalan dan pengaruh parameter awal terhadap dinamika gelombangnya. Hasil penelitian menunjukkan gelombang berjalan cenderung smooth ketika nilai awal konsentrasi matriks ekstraseluler (ECM) lebih besar dari nilai awal populasi sel tumor dan sebaliknya gelombang berjalan cenderung shock ketika nilai awal konsentrasi matriks ekstraseluler (ECM) lebih kecil daripada nilai awal populasi sel tumor.
References
G. Hek, Geometric singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), pp. 347–386.
A.J. Perumpanani, J.A. Sherratt, J. Norbury, and H.M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Phys. D, 126 (1999), pp. 145–159.
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Springer-Verlag, New York, 1994.
Landman,K.A, dkk. Diffusive and Chemotactic Cellular Migration: Smooth and Discountinuous Traveling Wave Solutions. Society for Industrial and Applied Mathematics. 65(4):1420-1442.2005.
Kreyzig, Erwin. Advanced Engineering Mathematics Sixth edition. New York : John Wiley & Sons, Inc.,1988.
Shepley L. Ross, Differential Equations. New York: John Wiley & Sons, 1984.
Edelstain, Leah., Keshet. Mathematical Models In Biology. Canada : Siam, 2005.
W. Hirsch, Morris, Stephen Smale, Robert L. Devaney. Differential Equations, Dynamical System,and an Introduction to Chaos. Elsevier (USA), 2004.
Anton, Howard. Aljabar Linear Elementer. Edisi 5, Jakarta: Erlangga, 1987.
J. Guckenheimer, P. Holmes. Nonliear Oscillations, Dunaical System, and Bifurcation of Vector Fields. New York: Springer – Verlag. 1983.
Downloads
Published
Issue
Section
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â