Analisis Dinamik Pada Model Penyebaran Penyakit Campak dengan Pengaruh Vaksin Permanen
DOI:
https://doi.org/10.15575/kubik.v2i2.1854Keywords:
Model dinamik, Kestabilan titik ekuilibrium endemik, Basic reproduction number, next generation matrix, penyakit campakAbstract
Penyakit campak merupakan penyakit menular yang disebabkan oleh virus golongan Paramixovirus. Kasus campak di Indonesia sering terjadi meskipun telah berhasil direduksi dari angka kejadian 180.000 kasus pada tahun 1990 menjadi sekitar 20.000 kasus pada tahun 2010. Pemberian vaksin campak kepada balita dan anak usia sekolah dasar merupakan salah satu program pemerintah dalam mencegah dan menanggulangi kenaikan angka kejadian penyakit campak. Pada paper ini dikembangkan model matematika untuk penyebaran penyakit campak. Model merupakan sistem dinamik non linear empat dimensi yang menggambarkan pengaruh vaksin permanen terhadap penyebaran penyakit campak. Metode Routh Hurwith digunakan untuk menganalisis kestabilan dari titik ekulibrium endemik. Kita menggunakan basic roproduction number untuk menganlisis keendemikan penyakit yang diperoleh dengan metode next generation matrix. Hasil Analisis dan Simulasi numerik memberikan informasi bahwa laju vaksinasi permanen berpengaruh sangat significant terhadap penurunan populasi manusia yang terinveksi penyakit campak.
References
D. Didik Budijanto, B. Hardhana, M. Yudianto, and Dkk, “Propil Kesehatan Indonesia 2016,†2017.
Depkes RI, “Kementerian kesehatan republik indonesia,†2016.
Y. Zhou, W. Zhang, S. Yuan, and H. Hu, “Persistence and extinction in stochastic sirs models with
general nonlinear incidence rate,†Electron. J. Differ. Equations, vol. 2014, 2014.
X. Wang, Y. Tao, and X. Song, “Analysis of pulse vaccination strategy in SIRVS epidemic model,â€
Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 6, pp. 2747–2756, 2009.
J. M. Heffernan and M. J. Keeling, “An in-host model of acute infection: Measles as a case study,â€
Theor. Popul. Biol., vol. 73, no. 1, pp. 134–147, 2008.
G. Zaman, Y. Han Kang, and I. H. Jung, “Stability analysis and optimal vaccination of an SIR
epidemic model,†BioSystems, vol. 93, no. 3, pp. 240–249, 2008.
G. Zaman, Y. H. Kang, G. Cho, and I. H. Jung, “Optimal strategy of vaccination & treatment in an
SIR epidemic model,†Math. Comput. Simul., vol. 136, pp. 63–77, 2017.
T. K. Kar and A. Batabyal, “Stability analysis and optimal control of an SIR epidemic model with
vaccination,†BioSystems, vol. 104, no. 2–3, pp. 127–135, 2011.
A. A. Lashari, “Optimal control of an SIR epidemic model with a saturated treatment,†Appl. Math.
Inf. Sci., vol. 10, no. 1, pp. 185–191, 2016.
H. Laarabi, A. Abta, M. Rachik, J. Bouyaghroumni, and E. H. Labriji, “Stability Analysis and Optimal
Vaccination Strategies for an SIR Epidemic Model with a Nonlinear Incidence Rate,†ISSN Int. J.
Nonlinear Sci., vol. 16, no. 4, pp. 1749–3889, 2013.
Jurnal Kubik, Volume 2 No. 2 ISSN : 2338-0896
Y. Zhao and D. Jiang, “The threshold of a stochastic SIRS epidemic model with saturated
incidence,†Appl. Math. Lett., vol. 34, no. 1, pp. 90–93, 2014.
Y. Cai, X. Wang, W. Wang, and M. Zhao, “Stochastic dynamics of an SIRS epidemic model with
ratio-dependent incidence rate,†Abstr. Appl. Anal., vol. 2013, 2013.
Q. Liu and Q. Chen, “Analysis of the deterministic and stochastic SIRS epidemic models with
nonlinear incidence,†Phys. A Stat. Mech. its Appl., vol. 428, pp. 140–153, 2015.
O. Diekmann, J. a P. Heesterbeek, and M. G. Roberts, “The construction of next-generation
matrices for compartmental epidemic models.,†J. R. Soc. Interface, vol. 7, no. 47, pp. 873–885,
J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis
and Interpretation, vol. 26 Suppl 4. 2000.
P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission,†Math. Biosci., vol. 180, pp. 29–48,
J. J. Anagnost and C. A. Desoer, “An elementary proof of the Routh-Hurwitz stability criterion,â€
Circuits Syst. Signal Process., vol. 10, no. 1, pp. 101–114, 1991.
X. Yang, “Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order,†Appl.
Math. Lett., vol. 15, no. 5, pp. 615–621, 2002.
Downloads
Published
Issue
Section
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â