Google Trends and Indonesia Presidential Elections 2024: Predictor of Popularity Candidate in Digital Age


Assyari Abdullah(1*), Yasril Yazid(2), Jayus Jayus(3), Sumaiyah Sumaiyah(4), Akmal Khairi(5), Edison Edison(6), Dwi Sutri Astuti(7)

(1) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia, Indonesia
(2) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia, Indonesia
(3) Universitas Muhammadiyah Riau, Pekanbaru, Indonesia, Indonesia
(4) Universitas Muhammadiyah Riau, Pekanbaru, Indonesia, Indonesia
(5) Sekolah Tinggi Agama Islam Imam Syafii, Pekanbaru, Indonesia, Indonesia
(6) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia, Indonesia
(7) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia, Indonesia
(*) Corresponding Author

Abstract


Google Trends is an alternative and effective tool for predicting candidate popularity and election results with a simple method. This research aims to analyze and compare the popularity of Indonesia's 2024 presidential candidates using Google Trends. This research uses Google Trends as a tool. Data is taken from December 2022-December 2023 with the keywords 'Anies Baswedan', 'Ganjar Pranowo', and 'Prabowo Subianto. Crowed data is visualized using facilities provided by Google Trends, Canva and  Flourish Studio's Data Visualization Software with three focus analyses: Interest over time, Interest by Region, and Related queries. The findings of this research show that the trend of searching for information about Indonesia's 2024 presidential candidates has been crowded since October 2022 and increased significantly until December 2023. The popularity of Anies Baswedan and Ganjar Pranowo on Google Trends was the same when each candidate made a declaration. Anies gained full popularity with 100 achievements, as well as Ganjar Pranowo gained full popularity when declared by Megawati Soekarno Putri with 100 achievements. However, the facts were very much different on the day when the Gerinda Party declared Prabowo Subianto. Prabowo's popularity when measured by Google Trends is only perched at position 30 while other candidates are above Prabowo, namely Ganjar 100 and Anies 78. Prabowo's popularity rose on August 13, 2022, which managed to get 100, Anies rose to 79 and Ganjar dropped to 57 even though it was only one day apart. These three candidates have different voter bases in the 2024 presidential election. Anies Baswedan's searchers on Google Trends are spread almost throughout the province. While Ganjar Pranowo excelled in Central Java, while West Papua, Maluku and Sulawesi many wanted to know Prabowo Subianto's information.


Keywords


President of Indonesia; Election 2024; Google Trends

Full Text:

PDF

References


Abdullah, A. (2018). MEMBACA KOMUNIKASI POLITIK GERAKAN AKSI BELA ISLAM 212: ANTARA POLITIK IDENTITAS DAN IJTIHAD POLITIK ALTERNATIF. ANIDA’, 41(2), 202–212. http://ejournal.uin-suska.ac.id/index.php/Anida/article/view/4654

Abdullah, A. (2020). Public Relations in The Era of Artificial Intelligence: Peluang atau Ancaman? ARISTO, 8(2), 406. https://doi.org/10.24269/ars.v8i2.2629

Annur, C. M. (2023). Pengguna Internet di Indonesia Tembus 213 Juta Orang hingga Awal 2023 | Databoks. Katadata.Co.Id. https://databoks.katadata.co.id/datapublish/2023/09/20/pengguna-internet-di-indonesia-tembus-213-juta-orang-hingga-awal-2023

Ariel, Y., Elishar, V., & Weimann-Saks, D. (2024). Analysing political engagement in a multimedia, multi-elections environment: Predictive factors in an unpredictable political reality. The Journal of International Communication, 1–21. https://doi.org/10.1080/13216597.2024.2340710

Askitas, N. (2015). Calling the Greek Referendum on the Nose with Google Trends. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2708382

Böhme, M. H., Gröger, A., & Stöhr, T. (2020). Searching for a better life: Predicting international migration with online search keywords. Journal of Development Economics, 142, 102347.

Bovet, A., & Makse, H. A. (2019). Influence of fake news in Twitter during the 2016 US presidential election. Nature Communications, 10(1), 1–12.

Burnap, P., Rana, O. F., Avis, N., Williams, M., Housley, W., Edwards, A., Morgan, J., & Sloan, L. (2015). Detecting tension in online communities with computational Twitter analysis. Technological Forecasting and Social Change, 95, 96–108. https://doi.org/10.1016/j.techfore.2013.04.013

Cahill, K. (2007). Google Tools on the Public Reference Desk. The Reference Librarian, 48(1), 67–79. https://doi.org/10.1300/J120v48n99_05

Chay, S., & Sasaki, N. (2011). Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan. Future Internet, 3(2), 117–129. https://doi.org/10.3390/fi3020117

Chykina, V., & Crabtree, C. (2018). Using Google Trends to Measure Issue Salience for Hard-to-Survey Populations. Socius: Sociological Research for a Dynamic World, 4, 237802311876041. https://doi.org/10.1177/2378023118760414

Cochran, T. (2019). Is Google Trends Better Than Polling? – 720 Strategies. 720strategies.Com. https://www.720strategies.com/insights/google-trends-polling/

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed). SAGE Publications.

Culliford, E. (2020). How political campaigns use your data. Reuters. https://www.reuters.com/graphics/USA-ELECTION/DATA-VISUAL/yxmvjjgojvr/

Davidson, M. W., Haim, D. A., & Radin, J. M. (2015). Using Networks to Combine “Big Data” and Traditional Surveillance to Improve Influenza Predictions. Scientific Reports, 5(1), 8154. https://doi.org/10.1038/srep08154

Davis, N. F., Smyth, L. G., & Flood, H. D. (2012). Detecting internet activity for erectile dysfunction using search engine query data in the Republic of Ireland. BJU International, 110(11c). https://doi.org/10.1111/j.1464-410X.2012.11237.x

detikNews. (2022). Gerindra Deklarasi Prabowo Subianto Sebagai Capres 2024. detikbali. https://www.detik.com/bali/berita/d-6230476/gerindra-deklarasi-prabowo-subianto-sebagai-capres-2024

Dihni, A. W. Y., Vika Azkiya. (2022). Peta Basis Pemilih Ganjar, Prabowo, dan Anies di Pilpres 2024 Halaman 2—Analisis Data Katadata. katadata.co.id. https://katadata.co.id/ariayudhistira/analisisdata/6389e3075a934/peta-basis-pemilih-ganjar-prabowo-dan-anies-di-pilpres-2024?page=2

Dihni, A. W. Y., Vika Azkiya. (2023). Apa yang Dicari Warganet dari Para Bakal Capres 2024 di Google? Halaman 2 - Analisis Data Katadata. katadata.co.id. https://katadata.co.id/ariayudhistira/analisisdata/64133f11c4a17/apa-yang-dicari-warganet-dari-para-bakal-capres-2024-di-google?page=2

Dirgantara, A., & Icha, R. (2022, October 3). Nasdem Resmi Deklarasikan Anies Baswedan Jadi Capres 2024. KOMPAS.com. https://nasional.kompas.com/read/2022/10/03/10440681/nasdem-resmi-deklarasikan-anies-baswedan-jadi-capres-2024

Epstein, R. (2018). Manipulating minds: The power of search engines to influence votes and opinions. In Digital Dominance: The Power of Google, Amazon, Facebook, and Apple. Oxford University Press.

Flourish. (2024a). How to visualize Google Trends data. Flourish | Data Visualization & Storytelling. https://flourish.studio/blog/google-trends-data-visualization/

Flourish. (2024b). Visualize elections. Flourish | Data Visualization & Storytelling. https://flourish.studio/resources/elections/

Gayo-Avello, D. (2013). A meta-analysis of state-of-the-art electoral prediction from Twitter data. Social Science Computer Review, 31(6), 649–679.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014.

Google News Initiative. (2023a). Google Trends. https://storage.googleapis.com/gweb-news-initiative-training.appspot.com/upload/Google_Trends.pdf

Google News Initiative. (2023b). Google Trends: Understanding the data. - Google News Initiative. https://newsinitiative.withgoogle.com/resources/trainings/google-trends-understanding-the-data/

Harford, T. (2014). Big data: A big mistake? Significance, 11(5), 14–19.

Hauge, H. S., & Lied, T. B. (2017). Explaining election outcomes using web search data: Evidence from the US presidential elections 2008-2016 [Master’s Thesis].

Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B., & Espina, C. (2013). Classifying Twitter topic-networks using social network analysis. Social Media+ Society, 1(2), 2056305113501305.

IWS. (2023). Usage and population statistics. Internet World Stats. https://www.internetworldstats.com/

Jayus, J., Sumaiyah, S., Mairita, D., & Abdullah, A. (2024). Media Sosial sebagai Media Kampanye Politik Menjelang Pemilu 2024. JURNAL SIMBOLIKA Research and Learning in Communication Study, 10(1), 72–81. https://doi.org/10.31289/simbolika.v10i1.11468

Jun, S.-P., Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69–87.

Kay, M., Matuszek, C., & Munson, S. A. (2015). Unequal Representation and Gender Stereotypes in Image Search Results for Occupations. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 3819–3828. https://doi.org/10.1145/2702123.2702520

Kenski, K., & Stroud, N. J. (2006). Connections between internet use and political efficacy, knowledge, and participation. Journal of Broadcasting & Electronic Media, 50(2), 173–192.

Knobloch-Westerwick, S., Johnson, B. K., Silver, N. A., & Westerwick, A. (2015). Science Exemplars in the Eye of the Beholder: How Exposure to Online Science Information Affects Attitudes. Science Communication, 37(5), 575–601. https://doi.org/10.1177/1075547015596367

Koronska, K. (2021, January 25). [Analysis] Can Google Trends be Used for Political Polling? The New Global Order. https://thenewglobalorder.com/world-news/analysis-can-google-trends-be-used-for-political-polling/

Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3(1), 3415. https://doi.org/10.1038/srep03415

Kristoufek, L. (2015). Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components. Physica A: Statistical Mechanics and Its Applications, 428, 194–205. https://doi.org/10.1016/j.physa.2015.02.057

Lorenz, R., Beck, J., Horneber, S., Keusch, F., & Antoun, C. (2022). Google Trends as a Tool for Public Opinion Research: An Illustration of the Perceived Threats of Immigration. In S. Pötzschke & S. Rinken (Eds.), Migration Research in a Digitized World (pp. 193–206). Springer International Publishing. https://doi.org/10.1007/978-3-031-01319-5_10

Lui, C., Metaxas, P. T., & Mustafaraj, E. (2011). On the predictability of the US elections through search volume activity.

Ma-Kellams, C., Bishop, B., Zhang, M. F., & Villagrana, B. (2018). Using “Big Data” Versus Alternative Measures of Aggregate Data to Predict the U.S. 2016 Presidential Election. Psychological Reports, 121(4), 726–735. https://doi.org/10.1177/0033294117736318

Martínez, R. G., & Román, C. P. (2014). Google search activities for predicting election results. IDP Revista de Internet Derecho y Política, 18, 2. https://doi.org/10.7238/idp.v0i18.1941

Mavragani, A., & Tsagarakis, K. P. (2016). YES or NO: Predicting the 2015 GReferendum results using Google Trends. Technological Forecasting and Social Change, 109, 1–5. https://doi.org/10.1016/j.techfore.2016.04.028

Mavragani, A., & Tsagarakis, K. P. (2019). Predicting referendum results in the Big Data Era. Journal of Big Data, 6(1), 3. https://doi.org/10.1186/s40537-018-0166-z

Mccallum, M. L., & Bury, G. W. (2013). Google search patterns suggest declining interest in the environment. Biodiversity and Conservation, 22(6–7), 1355–1367. https://doi.org/10.1007/s10531-013-0476-6

Mellon, J. (2013). Where and When Can We Use Google Trends to Measure Issue Salience? PS: Political Science & Politics, 46(02), 280–290. https://doi.org/10.1017/S1049096513000279

Metaxa, D., Park, J. S., Landay, J. A., & Hancock, J. (2019). Search Media and Elections: A Longitudinal Investigation of Political Search Results. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–17. https://doi.org/10.1145/3359231

Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P., & Rosenquist, J. (2021). Understanding the Demographics of Twitter Users. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 554–557. https://doi.org/10.1609/icwsm.v5i1.14168

Mocanu, D., Rossi, L., Zhang, Q., Karsai, M., Quattrociocchi, W., & Wijermans, N. (2013). Collective attention in the age of (mis)information. Computers in Human Behavior, 29(6), 2671–2676.

Moe, W. W., & Schweidel, D. A. (2012). Online Product Opinions: Incidence, Evaluation, and Evolution. Marketing Science, 31(3), 372–386. https://doi.org/10.1287/mksc.1110.0662

Nuti, S. V., Wayda, B., Ranasinghe, I., Wang, S., Dreyer, R. P., Chen, S. I., & Murugiah, K. (2014). The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE, 9(10), e109583. https://doi.org/10.1371/journal.pone.0109583

Pfannenstiel, B. (2021). Iowa Poll: Pete Buttigieg rockets to the top of the 2020 field as a clear front-runner. The Des Moines Register. https://www.desmoinesregister.com/story/news/politics/iowa-poll/2019/11/17/pete-buttigieg-leads-new-iowa-poll-warren-sanders-biden-follow/4198100002/

Polykalas, S. E., Prezerakos, G. N., & Konidaris, A. (2013). An algorithm based on Google Trends’ data for future prediction. Case study: German elections. IEEE International Symposium on Signal Processing and Information Technology, 000069–000073. https://doi.org/10.1109/ISSPIT.2013.6781856

Prado-Román, C., Gómez-Martínez, R., & Orden-Cruz, C. (2021). Google Trends as a Predictor of Presidential Elections: The United States Versus Canada. American Behavioral Scientist, 65(4), 666–680. https://doi.org/10.1177/0002764220975067

Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying Trading Behavior in Financial Markets Using Google Trends. Scientific Reports, 3(1), 1684. https://doi.org/10.1038/srep01684

Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Patil, S., Flammini, A., & Menczer, F. (2011). Detecting and tracking political abuse in social media. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media.

Salganik, M. J. (2018). Bit by bit: Social research in the digital age. Princeton University Press.

Scharkow, M., & Vogelgesang, J. (2011). Measuring the Public Agenda using Search Engine Queries. International Journal of Public Opinion Research, 23(1), 104–113. https://doi.org/10.1093/ijpor/edq048

Scheitle, C. P. (2011). Google’s Insights for Search: A Note Evaluating the Use of Search Engine Data in Social Research *. Social Science Quarterly, 92(1), 285–295. https://doi.org/10.1111/j.1540-6237.2011.00768.x

Sison, V. (2022). Can Google Trends Really Predict Election Outcomes? https://www.linkedin.com/pulse/can-google-trends-really-predict-election-outcomes-virgilio-sison

sofiamaddalena. (2023, January 26). Digital 2023: Indonesia. We Are Social Indonesia. https://wearesocial.com/id/blog/2023/01/digital-2023/

Statcounter.com. (2023). Search Engine Host Market Share Worldwide June 2022—June 2023. StatCounter Global Stats. https://gs.statcounter.com/search-engine-host-market-share

Stephens-Davidowitz, S. (2012). How Racist Are We? Ask Google. The New York Times. https://archive.nytimes.com/campaignstops.blogs.nytimes.com/2012/06/09/how-racist-are-we-ask-google/

Stephens-Davidowitz, S. (2014). The cost of racial animus on a black candidate: Evidence using Google search data. Journal of Public Economics, 118, 26–40.

Stephens-Davidowitz, S., & Pinker, S. (2017). Everybody lies: Big data, new data, and what the Internet can tell us about who we really are (First edition). Dey St., an imprint of William Morrow.

Suryaningtyas, M. T. (2023, May 7). Memaknai Deklarasi Pencapresan Ganjar Pranowo. kompas.id. https://www.kompas.id/baca/riset/2023/05/07/memaknai-deklarasi-pencapresan-ganjar-pranowo

Trevisan, F., Hoskins, A., Oates, S., & Mahlouly, D. (2018). The Google voter: Search engines and elections in the new media ecology. Information, Communication & Society, 21(1), 111–128. https://doi.org/10.1080/1369118X.2016.1261171

Trielli, D., & Diakopoulos, N. (2022). Partisan search behavior and Google results in the 2018 U.S. midterm elections. Information, Communication & Society, 25(1), 145–161. https://doi.org/10.1080/1369118X.2020.1764605

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. ICWSM, 10(1), 178–185.

UGM. (2018, June 5). Big Data and Its Role in Electoral Politics in Indonesia. DPP UGM. https://dpp.fisipol.ugm.ac.id/en/big-data-and-its-role-in-electoral-politics-in-indonesia/

Valentine, M. (2009, September 2). Google Gets 76 Billion Searches Per Month of 113 Billion Total. Small Business Tutorials - Domain Names. https://website101.com/press/google-76-billion-searches/

Vicéns-Feliberty, M. A., & Ricketts, C. F. (2016). An analysis of Puerto Rican interest to migrate to the United States using Google trends. The Journal of Developing Areas, 50(2), 411–430. https://doi.org/10.1353/jda.2016.0090

Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: Survey-based indicators vs. Google trends. Journal of Forecasting, 30(6), 565–578.

Wagner, S. A., Vogt, S., & Kabst, R. (2016). The future of public participation: Empirical analysis from the viewpoint of policy-makers. Technological Forecasting and Social Change, 106, 65–73. https://doi.org/10.1016/j.techfore.2016.02.010

Weber, I., Popescu, A.-M., & Pennacchiotti, M. (2013). PLEAD 2013: Politics, elections and data. Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management - CIKM ’13, 2553–2554. https://doi.org/10.1145/2505515.2505813

Weeks, B. E., Friedenberg, L. M., Southwell, B. G., & Slater, J. S. (2012). Behavioral Consequences of Conflict-Oriented Health News Coverage: The 2009 Mammography Guideline Controversy and Online Information Seeking. Health Communication, 27(2), 158–166. https://doi.org/10.1080/10410236.2011.571757

Westwood, S. J. (2010). How to Measure Public Opinion in the Networked Age: Working in a Googleocracy or a Googlearchy? In J. Berleur, M. D. Hercheui, & L. M. Hilty (Eds.), What Kind of Information Society? Governance, Virtuality, Surveillance, Sustainability, Resilience (Vol. 328, pp. 150–160). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-15479-9_14

Wihbey, J., April 5, T. J. R., & 2011. (2011). Predicting U.S. elections through search volume in Google Trends. The Journalist’s Resource. https://journalistsresource.org/politics-and-government/elections-search-volume/

Wladyka, D. K. (2017). Queries to Google Search as predictors of migration flows from Latin America to Spain. Journal of Population and Social Studies [JPSS], 25(4), 312–327.

World Bank. (2016). World Development Report 2016: Digital Dividends [Text/HTML]. World Bank. https://openknowledge.worldbank.org/bitstream/handle/10986/23347/9781464806711.pdf

Yang, H. “Chris,” & DeHart, J. L. (2016). Social Media Use and Online Political Participation Among College Students During the US Election 2012. Social Media + Society, 2(1), 205630511562380. https://doi.org/10.1177/2056305115623802

Yingxing Li & Kaiying Deng. (2012). User browsing interest in the propagation of public opinion in Tibetan internet to determine research. 2012 International Conference on Computer Science and Information Processing (CSIP), 859–862. https://doi.org/10.1109/CSIP.2012.6308989

Zhang, Q., Perra, N., Gonçalves, B., Ciulla, F., Vespignani, A., & Moreno, Y. (2016). Forecasting elections with Twitter: A general framework for modeling, prediction, and visualization. ACM Transactions on Intelligent Systems and Technology (TIST, 8(5), 70.

Zheluk, A., Gillespie, J. A., & Quinn, C. (2012). Searching for Truth: Internet Search Patterns as a Method of Investigating Online Responses to a Russian Illicit Drug Policy Debate. Journal of Medical Internet Research, 14(6), e165. https://doi.org/10.2196/jmir.2270




DOI: https://doi.org/10.15575/politicon.v6i2.34636

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Assyari Abdullah, Yasril Yazid, Jayus Jayus, Sumaiyah Sumaiyah, Akmal Khairi, Edison Edison, Dwi Sutri Astuti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Flag Counter

1th Floor, Building of FISIP

Jl. Raya A.H. Nasution No. 105 Cibiru Kota Bandung, 40614

E-mail: journalpoliticon@uinsgd.ac.id

 

Lisensi Creative Commons

POLITICON : Jurnal Ilmu Politik  are licensed under Attribution-ShareAlike 4.0 International