Studi of In Vivo Antidiabetic Activity of Namnam Leaves (Cynometra cauliflora) Extract in Sprague Dawley Rat


La Ode Sumarlin(1*), Agik Suprayogi(2), Min Rahminiwati(3), Aryani Satyaningtijas(4), Hajar Hajar(5), Meyliana Wulandari(6)

(1) Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
(2) Department of Anatomy Physiology and Pharmacology, Faculty Veterinary Medicine, IPB University, Indonesia
(3) Department of Anatomy Physiology and Pharmacology, Faculty Veterinary Medicine, IPB University, Indonesia
(4) Department of Anatomy Physiology and Pharmacology, Faculty Veterinary Medicine, IPB University, Indonesia
(5) Department of Animal Husbandry, Faculty of Agricultural Technology, University of Southeast Sulawesi, Indonesia
(6) Department of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
(*) Corresponding Author

Abstract


Various treatments for Type 2 Diabetes Mellitus (T2DM) aim to alleviate hyperglycemia. Although natural products have been extensively utilized, their mechanism of action and efficacy as antidiabetic agents, particularly for T2DM, has not been extensively assessed in vivo. In this research, the leaves of the Namnam (Cynometra cauliflora) were extracted and tested for their activity as an antidiabetic agent. Sprague Dawley rats aged 3.5-4 months, weighing 200-250 g, were used as the experimental model, with a total of 30 individuals. The rats were induced with a high-fat diet and 30% sucrose until their blood glucose concentration reached ≥ 120 mg/dL. Subsequently, the rats were divided into four groups (groups 1, 2, 3, and 4). Over 21 days, changes in blood glucose, triacylglycerol, glycogen, and blood plasma insulin levels were assessed. The results demonstrated that the methanol extract of Namnam leaves (NLME) effectively reduced blood glucose levels by 23-34%, decreased plasma triglyceride levels by 13-30%, and increased liver glycogen levels by 68-96% compared to the control group (Diabetes). Among all the parameters assessed, NLME exhibited similar performance to metformin, a commonly prescribed diabetes medication (p<0.05). Furthermore, the study revealed that NLME exerted antidiabetic effects, particularly for T2DM, by promoting liver glycogen formation, enhancing insulin secretion control, facilitating glucose absorption by muscles, and restricting fat metabolism in the blood

Keywords


Antidiabetic; Cynometra cauliflora; type 2 diabetes mellitus; glucose; insulin; triacylglycerol.

Full Text:

PDF

References


R.A. Rizza, “Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy”, Diabetes, 59(11), 2697–2707, 2010, doi: 10.2337/db10-1032.

K. Kishida, T. Funahashi, and I. Shimomura, “Molecular mechanisms of diabetes and atherosclerosis: Role of adiponectin”, Endocr Metab Immune Disord Drug Targets, 12(2), 118–131, 2012, doi: 10.2174/187153012800493468.

A. Bamosa, A. Elnour, H. Kaatabi, A. al Meheithif, K. Aleissa, and S. Al-Almaie, “Zamzam water ameliorates oxidative stress and reduces hemoglobina1c in type 2 diabetic patients”, J Diabetes Metab, 04(03), 1–5, 2013, doi: 10.4172/2155-6156.1000249.

E.S. Hosseyni, H.H. Kashani, and M.H. Asadi, “Mode of action of medicinal plants on diabetic disorders”, Life Sci J, 9(4), 2776–2783, 2012.

P. Alexiou and V.J. Demopoulos, “A Diverse series of substituted benzenesulfonamides as aldose reductase inhibitors with antioxidant activity: Design, synthesis, and in vitro activity”, J Med Chem, 53(21), 7756–7766, 2010, doi: 10.1021/jm101008m.

A. Seyedan, Z. Mohamed, M.A. Alshagga, S. Koosha, and M.A. Alshawsh, “Cynometra cauliflora Linn. Attenuates metabolic abnormalities in high-fat diet-induced obese mice”, J Ethnopharmacol, 236, 173–182, 2019, doi: 10.1016/j.jep.2019.03.001.

S.-C. Shen and W.-C. Chang, “Hypotriglyceridemic and hypoglycemic effects of vescalagin from Pink wax apple [Syzygium samarangense (Blume) Merrill and Perry cv. Pink] in high-fructose diet-induced diabetic rats”, Food Chem, 136(2), 858–863, 2013, doi: 10.1016/j.foodchem.2012.08.037.

J. de Wilde et al., “An 8-week high-fat diet induces obesity and insulin resistance with small changes in the muscle transcriptome of C57BL/6J mice”, Lifestyle Genom, 2(6), 280–291, 2009, doi: 10.1159/000308466.

H. Mawarti, R. Ratnawati, and D. Lyrawati, “Epigallocatechin Gallate Menghambat Resistensi Insulin pada Tikus dengan Diet Tinggi Lemak”, Jurnal Kedokteran Brawijaya, 27(1), 43–50, 2013, doi: 10.21776/ub.jkb.2012.027.01.8.

L. Sylow et al., “Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle”, Diabetes, 62(6), 1865–1875, 2013, doi: 10.2337/db12-1148.

F. Jameel, M. Phang, L.G. Wood, and M.L. Garg, “Acute effects of feeding fructose, glucose, and sucrose on blood lipid levels and systemic inflammation”, Lipids Health Dis, 13(1), 195, 2014, doi: 10.1186/1476-511X-13-195.

R. Wei et al., “Study on the effect of different types of sugar on lipid deposition in goose fatty liver,” Poult Sci, 101(4), 101729, 2022, doi: 10.1016/j.psj.2022.101729.

A.W. Augustine, A. Narasimhan, M. Vishwanathan, and B. Karundevi, “Evaluation of antidiabetic property of Andrographis paniculata powder in high fat and sucrose-induced type-2 diabetic adult male rat”, Asian Pac J Trop Dis, 4, S140–S147, 2014, doi: 10.1016/S2222-1808(14)60429-1.

Q.J. Fadheel, “A Comparative Study of the effect of Metformin and Metformin plus Garlic on Blood Glucose Level in patients with Type 2 Diabetes Mellitus in Iraq”, Res J Pharm Technol, 12(4), 1806, 2019, doi: 10.5958/0974-360X.2019.00301.9.

L.O. Sumarlin, A. Suprayogi, M. Rahminiwati, and A. Satyaningtijas, “Evaluasi in vitro kemampuan penyerapan glukosa oleh ekstrak daun namnam (Cynometra cauliflora) pada otot diafragma tikus”, Jurnal Kimia VALENSI, 4(1), 67–74, 2018, doi: 10.15408/jkv.v4i1.7345.

F. Hajiaghaalipour, M. Khalilpourfarshbafi, and A. Arya, “Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus”, Int J Biol Sci, 11(5), 508–524, 2015, doi: 10.7150/ijbs.11241.

A. Diani and A.B. Pulungan, “Tata laksana metformin diabetes mellitus tipe 2 pada anak dibandingkan dengan obat anti diabetes oral yang lain”, Sari Pediatri, 11(6), 395, 2016, doi: 10.14238/sp11.6.2010.395-400.

A. Pinakesty and R.N. Azizah, “Correlation between lipid profile with type 2 diabetes mellitus progression”, JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 8(2), 66–72, 2020, doi: 10.53366/jimki.v8i2.131.

M.S. Sultana, Y. Akhter, M. Parvin, M.M.U. Alam, L. Naznin, and M.A. Wahab, “Lipid profile pattern in type 2 diabetes mellitus patients”, Journal of Armed Forces Medical College, Bangladesh, 14(2), 177–179, 2020, doi: 10.3329/jafmc.v14i2.45903.

I. Wurdianing, S. Nugraheni, and Z. Rahfiludin, “Efek ekstrak daun sirsak (Annona muricata Linn) terhadap profil lipid tikus putih jantan (Rattus Norvegicus)”, Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition), 3(1), 7–12, 2014, doi: 10.14710/jgi.3.1.96-101.

A. Eidi, M. Eidi, and E. Esmaeili, “Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats”, Phytomedicine, 13(9–10), 624–629, 2006, doi: 10.1016/j.phymed.2005.09.010.

H. Al-Sulaiti et al., “Triglyceride profiling in adipose tissues from obese insulin sensitive, insulin resistant and type 2 diabetes mellitus individuals”, J Transl Med, 16(1), p. 175, 2018, doi: 10.1186/s12967-018-1548-x.

L.O. Sumarlin, A. Suprayogi, M. Rahminiwati, A. Tjachja, and D. Sukandar, “Bioaktivitas ekstrak metanol daun namnam serta kombinasinya dengan madu trigona”, Jurnal Teknologi dan Industri Pangan, 26(2), 144–154, 2015, doi: 10.6066/jtip.2015.26.2.144.

L. Bao, L. Hu, Y. Zhang, and Y. Wang, “Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum”, Exp Ther Med, 11(4), 1417–1424, 2016, doi: 10.3892/etm.2016.3038.

F.M. Ashcroft, M. Rohm, A. Clark, and M.F. Brereton, “Is type 2 diabetes a glycogen storage disease of pancreatic β cells?”, Cell Metab, 26(1), 17–23, 2017, doi: 10.1016/j.cmet.2017.05.014.

G.A. Bhat, H.A. Khan, A.S. Alhomida, P. Sharma, R. Singh, and B.A. Paray, “GLP-I secretion in healthy and diabetic Wistar rats in response to aqueous extract of Momordica charantia”, BMC Complement Altern Med, 18(1), 162, 2018, doi: 10.1186/s12906-018-2227-4.

M. Packirisamy, P. Ayyakkannu, and M. Sivaprakasam, “Antidiabetic effect of Coccinia grandis (L.) Voigt (Cucurbitales: Cucurbitaceae) on streptozotocin induced diabetic rats and its role in regulating carbohydrate metabolizing enzymes”, Brazilian Journal of Biological Sciences, 5(11), 683–698, 2018, doi: 10.21472/bjbs.051107.

S.E. Nikoulina, T.P. Ciaraldi, L. Carter, S. Mudaliar, K.S. Park, and R.R. Henry, “Impaired muscle glycogen synthase in type 2 diabetes is associated with diminished phosphatidylinositol 3-kinase activation”, J Clin Endocrinol Metab, 86(9), 4307–4314, 2001, doi: 10.1210/jcem.86.9.7872.

J.A. Junejo, K. Zaman, M. Ali, and M. Rudrapal, “New flavonoid with antidiabetic and antioxidant potential from Tetrastigma angustifolia (Roxb.) Deb leaves”, Brazilian Journal of Pharmaceutical Sciences, 56, 2020, doi: 10.1590/s2175-97902019000418806.

A. Fathoni, L.O. Sumarlin, F. Hanief, and D. Sukandar, “Isolation and cytotoxic activity of the β-carotene combination of trigona honey and namnam leaves extract (Cynometra cauliflora)”, Elkawnie, 7(1), 52, 2021, doi: 10.22373/ekw.v7i1.8696.

M.A. Ado, F. Abas, I.S. Ismail, H.M. Ghazali, and K. Shaari, “Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α-glucosidase inhibitory activity of Cynometra cauliflora L. leaves”, J Sci Food Agric, 95(3), 635–642, 2015, doi: 10.1002/jsfa.6832.

P.K. Mukherjee, K. Maiti, K. Mukherjee, and P.J. Houghton, “Leads from Indian medicinal plants with hypoglycemic potentials”, J Ethnopharmacol, 106(1), 1–28, 2006, doi: 10.1016/j.jep.2006.03.021.

M.K. Akbar, H. Hajrah, and Y. Sastyarina, “Identifikasi metabolit sekunder air seduhan daun kelor (Moringa oleifera Lam.) dan bawang dayak (Sisyrinchium palmifolium L.) yang berpotensi sebagai inhibitor ?-Glukosidase”, Proceeding of Mulawarman Pharmaceuticals Conferences, 15, 116–121, May 2022, doi: 10.25026/mpc.v15i1.627.

G. Marcelino et al., “β-Carotene: Preventive role for type 2 diabetes mellitus and obesity: A review”, Molecules, 25(24), 5803, 2020, doi: 10.3390/molecules25245803.

Y. Chai, J. Luo, and Y. Bao, “Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice”, Biomedicine & Pharmacotherapy, 143, 112155, 2021, doi: 10.1016/j.biopha.2021.112155.

R.B. Koneri, S. Samaddar, and C.T. Ramaiah, “Antidiabetic activity of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl.”, Indian J Exp Biol, 52(1), 46–52, 2014.

Y. Demir, M.S. Özaslan, H.E. Duran, Ö.İ. Küfrevioğlu, and Ş. Beydemir, “Inhibition effects of quinones on aldose reductase: Antidiabetic properties”, Environ Toxicol Pharmacol, 70, 103195, 2019, doi: 10.1016/j.etap.2019.103195.

L.O. Sumarlin et al., “Identification of compounds flavonoids namnam leaf extract (Cynometra Cauliflora) as inhibiting a-glucosidase”, J Phys Conf Ser, 1594(1), 012005, 2020, doi: 10.1088/1742-6596/1594/1/012005.




DOI: https://doi.org/10.15575/ak.v10i1.23406

Copyright (c) 2023 La Ode Sumarlin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.