Silver Leaching from Printed Circuit Board Using Deep Eutectic Solvent-Oxaline, Maline, and Succiline

Authors

  • Soja Siti Fatimah Material Chemistry Group Research, Study Program of Chemistry, Universitas Pendidikan Indonesia, Bandung, Indonesia
  • Abraham Mora Material Chemistry Group Research, Study Program of Chemistry, Universitas Pendidikan Indonesia, Bandung, Indonesia
  • Omay Sumarna Material Chemistry Group Research, Study Program of Chemistry, Universitas Pendidikan Indonesia, Bandung, Indonesia
  • Hudaifatul A. N Ramdaniah Material Chemistry Group Research, Study Program of Chemistry, Universitas Pendidikan Indonesia, Bandung, Indonesia

DOI:

https://doi.org/10.15575/ak.v12i1.46024

Keywords:

Deep Eutectic, Solvent, Printed Circuit Board, Oxaline, Leaching, Silver

Abstract

The exponential growth in printed circuit boards (PCBs) waste, presents an urgent environmental and economic challenge. PCBs contain silver which has a high potential economic value. The high production of waste and the potential economic value make it important to recycle PCB waste. Recycling can be conducted by leaching silver using Deep Eutectic Solvent (DES). DES is environmentally friendly and able to form complexes with various types of metals. This research aims to study the effect of the HBD carbon chain length of oxalic acid, malonic acid, and succinic acid from choline chloride-based eutectic solvents (DES) on the efficiency of leaching silver from Printed Circuit Board (PCB) waste. Optimization of the solid/liquid ratio, time, and temperature is carried out to obtain optimum leaching conditions. The synthesis results show that DES oxaline 2:1, malin 1:1, and succilin 2:1 have good stability, forming a colorless, clear, and viscous solution. FTIR analysis shows a shift in the wave number of the -OH group due to hydrogen bond interactions between HBA and HBD molecules in the formation of DES. The leaching yield of DES against standard silver oxide was measured using AAS. DES oxaline 2:1 has the greatest efficiency compared to other DES variations. The results of optimizing standard silver leaching with DES oxaline showed that the S/L ratio was 40 mg/mL, with a time of 18 hours, at a temperature of 60°C which resulted in a recovery percentage of 90.90%, while for the PCB waste sample yielded an efficiency of 99.38%. The eutectic solvent oxaline has the potential to be an environmentally friendly solvent that is efficient in leaching silver from PCB electronic waste.

References

[1] C. Erust, A. Akcil, A. Tuncuk, and S. Panda, “Intensified acidophilic bioleaching of multi‐metals from waste printed circuit boards (WPCBs) of spent mobile phones”, Journal of Chemical Technology & Biotechnology, 95(8), 2272–2285, 2020, https://doi.org/10.1002/jctb.6417
[2] D. N. Perkins, M. N. Brune Drisse, T. Nxele, and P. D. Sly, “E-Waste: A Global Hazard”, Annals of Global Health, 80(4), 286, 2014, https://doi.org/10.1016/
j.aogh.2014.10.001
[3] P. Chancerel, C. E. M. Meskers, C. Hagelüken, and V. S. Rotter, “Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment”, Journal of Industrial Ecology, 13(5), 791–810. https://doi.org/10.1111/j.1530-9290.2009.
00171.x
[4] M. Kaya, “Current WEEE recycling solutions”, Waste Electrical and Electronic Equipment Recycling, 33–93, 2018, https://doi.org/10.1016/
B978-0-08-102057-9.00003-2
[5] C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, and I. M. Marrucho, “Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids”, ACS Sustainable Chemistry & Engineering, 2(10), 2416–2425., 2014, https://doi.org/10.1021/sc500439w
[6] V. Goodship, A. Stevels, J. Huisman, Waste Electrical and Electronic Equipment (WEEE) Handbook, Elsevier, 2019, https://doi.org/10.1016/C2016-0-03853-6
[7] K. Binnemans and P. T. Jones, “Ionic Liquids and Deep-Eutectic Solvents in Extractive Metallurgy: Mismatch Between Academic Research and Industrial Applicability”, Journal of Sustainable Metallurgy, 9(2), 423–438, 2023, https://doi.org/10.1007/s40831-023-00681-6
[8] Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban, “Status and advances of deep eutectic solvents for metal separation and recovery”, Green Chemistry, 24(5), 1895–1929, 2022, https://doi.org/10.1039/D1GC03851F
[9] F. Pena-Pereira and I. de la Calle, “Solvents/Eutectic Solvents”, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018, https://doi.org/10.1016/B978-0-12-409547-2.14020-X
[10] E. Riveiro, B. González, and Á. Domínguez, “Extraction of adipic, levulinic and succinic acids from water using TOPO-based deep eutectic solvents”, Separation and Purification Technology, 241, 116692, 2020, https://doi.org/10.1016/j.seppur.2020.116692
[11] N. Peeters, K. Binnemans, and S. Riaño, “Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents”, Green Chemistry, 22(13), 4210–4221, 2020, https://doi.org/10.1039/D0GC00940G
[12] M. K. Tran, M.-T. F. Rodrigues, K. Kato, G. Babu, and P. M. Ajayan, “Deep eutectic solvents for cathode recycling of Li-ion batteries”, Nature Energy, 4(4), 339–345, 2019, https://doi.org/10.1038/s41560-019-0368-4
[13] Z. Xu, H. Shao, Q. Zhao, and Z. Liang, “Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries”, Journal of The Minerals, Metals & Materials (JOM), 73(7), 2104–2110, 2021, https://doi.org/10.1007/s11837-021-04641-x
[14] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, “Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids:  Versatile Alternatives to Ionic Liquids”, Journal of the American Chemical Society, 126(29), 9142–9147, 2004, https://doi.org/10.1021/ja048266j
[15] A.P. Abbott, G. Clapper, D. L. Davies, K. J. McKenzie, and S. U. Obi, ”Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride”, Journal of Chemical & Engineering Data, 51(4), 1280–1282, 2006, https://doi.org/10.1021/je060038c
[16] E. L. Smith, A. P. Abbott, & K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications”, Chemical Reviews, 114(21), 11060–11082, 2014, https://doi.org/10.1021/cr300162p
[17] N. R. Rodriguez, A. van den Bruinhorst, L. J. B. M Kollau, M. C. Kroon, & K. Binnemans, “Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids”, ACS Sustainable Chemistry & Engineering, 7(13), 11521–11528. https://doi.org/10.1021/acssuschemeng.9b01378
[18] S. S. Fatimah, W. Siswaningsih, A. Kusrijadi, and F. A. Shalahuddin, “Silver Recovery from X-ray Film Waste by Leaching and Precipitation Method Using Sodium Hydroxide and Sodium Sulfide”, Jurnal Kimia Valensi, 6(1), 62–69, 2020, https://doi.org/10.15408/jkv.v6i1.13648
[19] T. El Achkar, H. Greige-Gerges & S. Fourmentin, “Basics and properties of deep eutectic solvents: a review”. Environmental Chemistry Letters, 19(4), 3397–3408, 2021, https://doi.org/10.1007/s10311-021-01225-8
[20] R. K. Ibrahim et al., “A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution”, Journal of Environmental Management, 235, 521–534, 2019, https://doi.org/10.1016/j.jenvman.2019.01.070
[21] K. Shahbaz, S. Baroutian, F. S. Mjalli, M. A. Hashim, and I. M. AlNashef, “Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques”, Thermochimica Acta, 527, 59–66, 2012, https://doi.org/10.1016/j.tca.2011.10.010
[22] A. P. Abbott, R. C. Harris, & K. S. Ryder, “Application of Hole Theory to Define Ionic Liquids by their Transport Properties”, The Journal of Physical Chemistry B, 111(18), 4910–4913, 2007, https://doi.org/10.1021/jp0671998
[23] A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol eutectics as sustainable solvent systems”, Green Chemistry, 13(1), 82–90, 2011, https://doi.org/10.1039/C0GC00395F
[24] P. Meshram, Abhilash, B. D. Pandey, T. R. Mankhand, and H. Deveci, “Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries”, Journal of The Minerals, Metals & Materials (JOM), 68(10), 2613–2623. https://doi.org/10.1007/s11837-016-2032-9
[25] L. Gontrani, N. V. Plechkova, and M. Bonomo, “In-Depth Physico-Chemical and Structural Investigation of a Dicarboxylic Acid/Choline Chloride Natural Deep Eutectic Solvent (NADES): A Spotlight on the Importance of a Rigorous Preparation Procedure”, ACS Sustainable Chemistry & Engineering, 2019, https://doi.org/10.1021/acssuschemeng.9b02402
[26] U. Saeed, A. Laeeq Khan, M. Amjad Gilani, M. Roil Bilad, and A. Ullah Khan, “Supported liquid membranes comprising of choline chloride based deep eutectic solvents for CO2 capture: Influence of organic acids as hydrogen bond donor”, Journal of Molecular Liquids, 335, 116155, 2021, https://doi.org/10.1016/j.molliq.2021.116155
[27] J. Coates, “Interpretation of Infrared Spectra, A Practical Approach”, Encyclopedia of Analytical Chemistry, Wiley, 2000, https://doi.org/10.1002/9780470027318.a5606
[28] S. K. Saha, S. Dey, and R. Chakraborty, “Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos”, Journal of Molecular Liquids, 287, 110956, 2019, https://doi.org/10.1016/j.molliq.2019.110956
[29] M. Gilmore, M. Swadzba-Kwasny, and J. D. Holbrey, “Thermal Properties of Choline Chloride/Urea System Studied under Moisture-Free Atmosphere”, Journal of Chemical & Engineering Data, 64(12), 5248–5255, 2019, https://doi.org/10.1021/acs.jced.9b00474
[30] N. Azizi, S. Dezfooli, M. Khajeh, and M. M. Hashemi, “Efficient deep eutectic solvents catalyzed synthesis of pyran and benzopyran derivatives”, Journal of Molecular Liquids, 186, 76–80, 2013, https://doi.org/10.1016/j.molliq.2013.05.011
[31] I. B. Qader and K. Prasad, “Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications”, Pharmaceutical Research, 39(10), 2367–2377, 2022, https://doi.org/10.1007/s11095-022-03315-w
[32] S. A. Slabi, C. Mathe, M.. Basselin, X. Framboisier, M. Ndiaye, O. Galet, & R. Kapel, (2020). “Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal”, Food Chemistry, 317, 126423. https://doi.org/10.1016/j.foodchem.2020.126423
[33] I. M. Pateli, D. Thompson, S. S. M. Alabdullah, A. P. Abbott, G. R. T. Jenkin, and J. M. Hartley, “The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents”, Green Chemistry, 22(16), 5476–5486, 2020, https://doi.org/10.1039/D0GC02023K
[34] J. Richter and M. Ruck, “Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents”, Molecules, 25(1), 78. https://doi.org/10.3390/molecules25010078
[35] U. U. Jadhav, B. K. Biswal, Z. Chen, E.-H. Yang, and H. Hocheng, “Leaching of Metals from Incineration Bottom Ash Using Organic Acid”, Journal of Sustainable Metallurgy, 4(1), 115–125, 2018, https://doi.org/10.1007/s40831-018-0161-9
[36] J. Li, T. Xu, J. Liu, J. Wen, and S. Gong, “Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review”, Environmental Science and Pollution Research, 28(33), 44622–44637, 2021, https://doi.org/10.1007/s11356-021-15074-z
[37] N. Nagar, H. Garg, N. Sharma, S. A. Awe, and C. S. Gahan, “Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst”, 3 Biotech, 11(3), 143, 2021, https://doi.org/10.1007/s13205-021-02686-y
[38] F. Huang, T. Li, X. Yan, Y. Xiong, X. Zhang, S. Lu, N. An, W. Huang, Q. Guo, & X. Ge “Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide”, ACS Omega, 7(13), 11452–11459, 2022, https://doi.org/10.1021/acsomega.2c00742
[39] S. Sanchez-Segado, T. Makanyire, L. Escudero-Castejon, Y. Hara, and A. Jha, “Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching – an improved approach to process engineering”, Green Chemistry, 17(4), 2059–2080, 2015, https://doi.org/10.1039/C4GC02360A
[40] Y. Liu, Y. Fu, L. Zheng, M. Wang, Z. Wang, S. Yang, J. Liu & X. Gong, “Leaching characteristics and solidification strategy of heavy metals in solid waste from natural graphite purification”, Environmental Science and Pollution Research, 30(11), 30892–30904, 2022, https://doi.org/10.1007/s11356-022-24298-6
[41] T. Xie, X. Li, H. Sun, and Z. Dan, “Characteristics and factors that influence heavy metal leaching from spent catalysts”, Environmental Science and Pollution Research, 29(42), 63393–63406, 2022, https://doi.org/10.1007/s11356-022-20280-4
[42] W. Mu, M. Gu, S. Du, Y. Chen, X. Lei, H. Chen, S. Luo & L. Wang, “Extraction efficiency of metals from low-nickel matte via NH4Cl roasting-water leaching process and synthesis of (Ni,Cu,Co)Fe2O4 photocatalyst”, Journal of Central South University, 30(6), 1803–1816. https://doi.org/10.1007/s11771-023-5342-4
[43] S. Fu, J. Lu, I. Walder, & D. Wu, “Effect of temperature on the leaching of heavy metals from nickel mine tailings in the arctic area, Norway”, International Journal of Agricultural and Biological Engineering, 16(2), 152–158, 2023, https://doi.org/10.25165/j.ijabe.20231602.7216
[44] S. Fu and J. Lu, “Temperature-driven variation in the removal of heavy metals from contaminated tailings leaching in northern Norway”, Environmental Monitoring and Assessment, 191(2), 123, 2019, https://doi.org/10.1007/s10661-019-7244-3
[45] X. Fan, W. Xing, H. Dong, J. Zhao, Y. Wu, B. Li, W. Tong & X. Wu, “Factors Research on the Influence of Leaching Rate of Nickel and Cobalt from Waste Superalloys with Sulfuric Acid”, International Journal of Nonferrous Metallurgy, 02(02), 63–67, 2013, https://doi.org/10.4236/ijnm.2013.22008
[46] S. C. Pinho, C. Ribeiro, C. A. Ferraz, and M. F. Almeida, “Copper, zinc, and nickel recovery from printed circuit boards using an ammonia–ammonium sulphate system”, Journal of Material Cycles and Waste Management, 23(4), 1456–1465, 2021, https://doi.org/10.1007/s10163-021-01226-3
[47] M. Hosseinzadeh, A. Entezari Zarandi, L.-C. Pasquier, and A. Azizi, “Kinetic Investigation on Leaching of Copper from a Low-Grade Copper Oxide Deposit in Sulfuric Acid Solution: A Case Study of the Crushing Circuit Reject of a Copper Heap Leaching Plant”, Journal of Sustainable Metallurgy, 7(3), 1154–1168, 2021, https://doi.org/10.1007/s40831-021-00408-5
[48] M. A. Mesinas Romero, I. Rivera Landero, M. I. R. Valderrama, E. S. Rodríguez, E., J. H. Ávila, E. C. Sáenz & E. G. Palacios Beas, M. A. Mesinas Romero et al., “Preliminary Study of the Effect of Stirring Rate, Temperature and Oxygen Pressure on the Leach Rate of Copper Powder, Generated by Grinding of Printed Circuit Boards of Computer”, Characterization of Minerals, Metals, and Materials, 699–707, 2017, https://doi.org/10.1007/978-3-319-51382-9_77

Downloads

Published

2025-06-30

How to Cite

Fatimah, S. S., Mora, A., Sumarna, O., & Ramdaniah, H. A. N. (2025). Silver Leaching from Printed Circuit Board Using Deep Eutectic Solvent-Oxaline, Maline, and Succiline . Al Kimiya: Jurnal Ilmu Kimia Dan Terapan, 12(1), 70–80. https://doi.org/10.15575/ak.v12i1.46024

Issue

Section

Articles

Citation Check