Statistical reasoning through metacognitive brain-based learning
DOI:
https://doi.org/10.15575/ja.v6i1.8158Keywords:
Active Learning, metacognitive, statistical reasoningAbstract
The low ability of students' statistical reasoning needs a promising learning innovation. The aim of this paper is to evaluate students' learning abilities through brain-based learning with metacognitive strategy. The Quasi Experiment Method, Nonequivalent Pretest-Posttest Control Group design, involved a sample of two classes of third semester students from Gunung Djati Swadaya University Cirebon. Instruments of this paper are statistical reasoning test and statistical preliminary knowledge tests. The result shows an increase in the ability of statistical reasoning among students who conducted brain-based learning with metacognitive strategy in the smart category, higher than students who applied expository learning strategy that only classified as the moderate category. Based on initial statistical knowledge (low, middle, and high) students who applied brain-based learning with metacognitive strategy, got a higher level than students who applied expository learning strategy. It shows interaction between the type of learning as well as initial statistical knowledge with the escalation of the ability of statistical reasoning. Brain-based learning with metacognitive strategy facilitates the process of conflict, discovery, social interaction, and reflective processes of students. Therefore, students abilities of statistical reasoning are better than expository learning strategy.
References
Boeren, E. (2017). The methodological underdog, A review of quantitative research in the key adult Education Journals, Adult Education Quarterly, 68 (1), 63-79.
Chandran, R (2015) Mandatory class participation: Factors that influence, classroom practices and learning outcomes. Asian Journal of the Scholarship of Teaching and Learning, 5(2), 108-122.
Chan, S.W, & Zaleh, I. (2014). Developing statistical reasoning assessment instrument for high school students in descriptive statistics. Procedia-Social and Behavioral Sciences, 116, 4338-4343.
Cuseo, J, B., Thompson, A., Campagna, M., & Fecas,V, S. (2016). Thriving in college and beyond: research-based strategies for academic success and personal development, Dubuque, IA: Kendall Hunt Publishing.
Downing, K.J., (2009). Self eficiacy and metacognitive development, The International Journal of Learning. Vol 4, No 16, hal 21-32.
Hevriansyah, P,. Megawanti (2016). Pengaruh kemampuan awal terhadap hasil belajar matematika J. Kaji. Pendidik. Mat. 2 1 37–44.
Ibáñez, V., Pérez, S., Silva, J., & Tamarit, S. (2019). Statistical analysis of students’ behavioral and attendance habits in engineering education. Educational Sciences: Theory And Practice, 19(4),48-64.
Kausar, F. (2019). A study of relationship between physical facilities in classroomand student's performance: A secondary level study. In M. Ahmad (Eds, Proceedings of 17th International Conference on Statistical Science) Vol. 33, pp. 223-228.
Maron, A, I (2016). Priorities of teaching mathematics in universities†IEJME–International Electronic Journal of Mathematics Education, 11 (9), pp. 3339-3350.
Maryati. (2017). Peningkatan kemampuan penalaran statistis siswa Sekolah Menengah Pertama melalui pembelajaran kontekstual. Jurnal Mosharafa, 6(1), 129-14.
Maulana, (2008). Pendekatan metakognitif sebagai alternatif pembelajaran untuk meningkatkan kemampuan berpikir kritis mahasiswa PGSD, Jurnal Pendidikan Serambi Ilmu, Vol 2, No 10, Hal 25-36.
Namira, Z, B., Kusumo, E., Prasetya, A, T. (2014). Keefektifan strategi metakognitif berbantu advance organizer untuk meningkatkan hasil belajar kimia siswa, Jurnal Inovasi Pendidikan Kimia, Volume 8, No. 1, hal 1271 – 1280.
Nisa, S., Zulkardi, & Susanti, E. (2019). Kemampuan penalaran statistis siswa pada materi penyajian data histogram melalui pembelajaran PMRI. Jurnal Pendidikan Matematika, 13(1), 21-40.
Putra, R, W. (2015). Pembelajaran konflik kognitif untuk meningkatkan kemampuan komunikasi matematis siswa berdasarkan kategori pengetahuan awal matematis. Al-Jabar Jurnal pendidikan matematika.
Romli, M. (2009). Strategi membangun metakognisi siswa SMA dalam pemecahan masalah Matematika, Skripsi, Madura: FKIP Universitas Madura.
Rosidah. (2016). Penalaran statistis siswa sma dalam pemecahan masalah statistika di tinjau dari perbedaan gender. Prosiding Seminar Nasional. 2(1), 57-65.
Siti Nurhairiyah, S., Manfaat, B. (2013). Pengembangan Instrumen Tes Untuk Mengukur Kemampuan Penalaran Statistik Mahasiswa, Journal Eduma,2(2).
Snee, (1999). Discussion: Development and Use of Statistical Thinking: A New Era, International Statistical Review, 67, 255-258.
Susilawati, W (2019).Peningkatan kemampuan berpikir statistis mahasiswa melalui challenge-based learning dengan strategi konflik kognitif. Jurnal analisa, Vol 5, No. 1, h 31- 40.
Susilawati, W. (2017). Pengaruh pembelajaran berbasis tantangan terhadap kemampuan visualisasi spasial, berpikir lateral dan kegigihan matematis mahasiswa, Disertasi SPS UPI.
Ulpah, M. (2013). Peningkatan kemampuan penalaran statistis dan self-efficacy siswa madrasah aliyah melalui pembelajaran kontekstual. Repository UPI Central Library.193-197.
Yusuf, Y. (2017).Konstruksi penalaran statistis pada statistika penelitian. Scholaria, Vol. 7 No 1, 60-69.
Downloads
Published
Issue
Section
License
Authors who publish in Jurnal Analisa agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).