Efektifitas Azotobacter sp. Dan Pseudomonas sp. Pada tanaman sorgum (Shorgum bicolor L.) dalam proses fitoremediasi limbah minyak bumi


Pujawati Suryatmana(1*), Mieke Rochimi Setiawati(2), Nadia Nuraniya Kamaluddin(3), Diyan Herdiyantoro(4)

(1) Department of Soil Science and Land Resources, Agriculture Faculty, Universitas Padjadjaran.,  
(2) Department of Soil Science and Land Resources, Agriculture Faculty, Universitas Padjadjaran., Indonesia
(3) Department of Soil Science and Land Resources, Agriculture Faculty, Universitas Padjadjaran., Indonesia
(4) Department of Soil Science and Land Resources, Agriculture Faculty, Universitas Padjadjaran., Indonesia
(*) Corresponding Author

Abstract


 

Interaksi sinergis antara tanaman-bakteri dapat digunakan untuk meningkatkan kinerja fitoremediasi tanah yang terkontaminasi hidrokarbon (HC). Penelitian bertujuan untuk karakterisasi plant growth promoting rhizobacteria: Azotobacter sp. dan Pseudomonas sp. dalam kinerja fitoremediasi limbah minyak bumi menggunakan tanaman sorgum (Sorghum bicolor L.). Penelitian menggunakan rancangan acak kelompok faktorial (RAK-Faktorial) terdiri dari inokulasi Azotobacter sp. sebanyak 0%, 1%, 2%, dan 3% per konsentrasi total petroleum hydrocarbon (TPH), dan inokulasi Pseudomonas sp  0%, 1%, 2%, dan 3% per TPH. Hasil penelitian menunjukkan bahwa tidak ada interaksi antara inokulasi Azotobacter sp. dan Pseudomonas sp. terhadap seluruh variabel respon. Namun, efek mandiri terlihat pada efisiensi biodegradasi HC, yaitu inokulasi Azotobacter sp dosis 3% berbeda secara signifikan dengan kontrol pada fase ke 4 minggu setelah tanam (MST), tetapi tidak signifikan pada fase 14 MST. Inokulasi Pseudomonas sp. tidak memberikan efek yang signifikan antar perlakuan terhadap efisiensi biodegradasi HC pada dua periode pengamatan. Populasi Azotobacter sp. dan Pseudomonas sp. menurun pada periode 4 MST, selanjutnya meningkat  pada periode 14 MST. Pertumbuhan tanaman sorgum mengalami retardasi selama 14 MST. Residu hidrokarbon terakumulasi lebih tinggi di bagian akar daripada di bagian tajuk tanaman. Azotobacter sp. dan Pseudomonas sp. berperan sebagai binding agent yang dapat menghambat serapan hidrokarbon oleh akar sorgum.


ABSTRACT

The synergism interaction between plant-bacteria can be used to improve performance of phytoremediation hydrocarbon (HC) contaminated soil. The study aimed to characterize  Azotobacter sp. and Pseudomonas sp. in petroleum phytoremediation performance using sorghum (Sorghum bicolor L). The research used a randomized block design with two factors: Azotobactersp. inoculation 0%, 1%, 2% and 3% per total petroleum hydrocarbon (TPH) concetration, and Pseudomonas sp inoculation:  0%, 1%, 2% and 3% per TPH concentration. The results showed there was no interaction between Azotobacter sp. and Pseudomonas sp. inoculation to each response variable. The independent effect of 3% Azotobacter sp. to biodegradation HC efficiency was significantly different from the control at phase 4 weeks after planting (WAP), but not significantly different at phase 14 WAP. Pseudomonas sp. effect did not show a significantly different between treatments on the hydrocarbon biodegradation efficiency in the two observation periods. Azotobacter sp. and Pseudomonas sp. population decreased at period 4 WAP, then increased at period 14 WAP. The Sorghum growth was retarded during 14 WAP. Hydrocarbon residues accumulated higher in the roots than in shoot. Azotobacter sp. and Pseudomonas sp. act as a binding agent that can inhibit the hydrocarbons uptake by sorghum roots.


Keywords


Azotobacter sp., fitoremediasi, hidrokarbon, Pseudomonas sp., Shorgum bicolor L

Full Text:

PDF

References


Abou Seeda MA, Yassen AA, Abou El-Nour EAA, Gad MM, & Zaghoul SB. (2020). Phytoremediation of heavy metals principles, mechanisms, enhancements with several efficiency enhancer methods and perspectives: A Review. Middle East Journal of Agriculture Research. https://doi.org/10.36632/mejar/2020.9.1.17

Afzal, M., Yousaf, S., Reichenauer, T. G., & Sessitsch, A. (2012). The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. International Journal of Phytoremediation, 14(1), 35–47. https://doi.org/10.1080/15226514.2011.552928

Ahmad, F., Iqbal, S., Anwar, S., Afzal, M., Islam, E., Mustafa, T., & Khan, Q. M. (2012). Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. Journal of Hazardous Materials, 237–238, 110–115. https://doi.org/10.1016/j.jhazmat.2012.08.006.

Akinci, I. E & Akinci, S. (2010). Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). African Journal of Biotechnology, 9(29), 4589-4594.

Arifin, M., Darmawan Putri, N., Sandrawati, A., & Rachmat Harryanto. (2018). Pengaruh Posisi Lereng terhadap Sifat Fisika dan Kimia Tanah pada Inceptisols di Jatinangor. Soilrens, 16(2), 37–44.

Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z., & Rathbone, K. (2003). Degradation of Crude Oil in the Rhizosphere of Sorghum bicolor. International Journal of Phytoremediation, 5(3), 225–234. https://doi.org/10.1080/713779222

BPS. (2020). Statistik pertambangan non minyak dan gas bumi 2014 – 2019. Jakarta, ID: Badan Pusat Statis- tik. Retrieved.https://www.bps.go.id/publication/2020/12/21/43e346b8c4f38c2df622a73c/ statistik-pertambangan-non-minyak-dan-gas-bu- mi-2014-2019.html

Dey, R., Sarkar, K., Dutta, S., Murmu, S., & Mandal, N. (2017). Role of Azotobacter sp. Isolates as a Plant Growth Promoting Agent and their Antagonistic Potentiality against Soil Borne Pathogen (Rhizoctonia solani) under in vitro Condition. International Journal of Current Microbiology and Applied Sciences, 6(11), 2830–2836. https://doi.org/10.20546/ijcmas.2017.611.334

Estuningsih, S. P., Muharani, & Rynanad, M. (2012). Isolasi dan Identifikasi Bakteri Hidrokarbon di Sekitar Rizosfer Rumput Belulang (Eleusine Indica (L.) Gaertn) yang Berperan dalam Fitoremediasi Limbah Minyak Bumi. Jurnal Penelitian Sains, 15, 41–45.

Fernández, M. D., Pro, J., Alonso, C., Aragonese, P., & Tarazona, J. V. (2011). Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils. Ecotoxicology and Environmental Safety, 74(8), 2133–2140. https://doi.org/10.1016/j.ecoenv.2011.08.009

Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. In Biotechnology Advances (Vol. 28, Issue 3, pp. 367–374). https://doi.org/10.1016/j.biotechadv.2010.02.001

Juhanson, J., Truu, J., Heinaru, E., & Heinaru, A. (2009). Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiology Ecology, 70(3), 446–455. https://doi.org/10.1111/j.1574-6941.2009.00754.x

Nie, M., Wang, Y., Yu, J., Xiao, M., Jiang, L., Yang, J., Fang, C., Chen, J., & Li, B. (2011). Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS ONE, 6(3). https://doi.org/10.1371/journal.pone.0017961

Omara, T., Kalukusu, R., Adupa, E., Owori, T., Kizza, D. M., Obonge, J., & Potential, J. O. (2017). Potential of Sorghum bicolor L. (Moench) and the Effect of Enhancements in Remediation of Petroleum-Vitiated Soils of an Automobile Repair Workshop in Urbanite Kampala. International Journal of XXXXXX, x, x–x. https://doi.org/10.11648/j.xxx.xxxxxxxx.xx

Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2–3), 1490–1496. https://doi.org/10.1016/j.jhazmat.2009.03.036

Sah, S., Krishnani, S., & Singh, R. (2021). Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. In Current Research in Microbial Sciences (Vol. 2). Elsevier Ltd. https://doi.org/10.1016/j.crmicr.2021.100084

Sumbul, A., Ansari, R., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 30(40), 1–7. https://doi.org/10.1016/j.sjbs.2020.08.004

Suryatmana, P., Kardena, E., Ratnaningsih, E., & Wisjnuprapto. (2007). Improving the Effectiveness of Crude-Oil Hydrocarbon Biodegradation Employing Azotobacter chroococcum as Co-Inoculant. MIcrobiology Indonesia, 1(1), 5–10. https://doi.org/10.5454/mi.1.1.2

Suryatmana, P., Sabrina, A., Kamaludiin, N. N., Fitriatin, B. N.,

Hindersah R, & Setiawati, M. R. (2020). Potensi tanaman Sorgum (Sorghum bicolor L), Azotobacter sp. dan Pseudomonas sp, sebagai agen biologis dalam proses Fitoremediasi HC minyak bumi. Soilrens, 18(1), 25–33.

Suryatmana, P., Mieke Rochimi Setiawati, M. R., Herdiyantoro, D., Fitriatin, B. N., & Kamaluddin, N. N. (2022). Characterization and Potential of Plant Growth-Promoting Rhizobacteria (PGPR) Isolates Capacity Correlating with Their Hydrocarbon Biodegradation Capability. Agrivita Journal of Agricultural Science. 44(3): 559-574.

Velmourougane, K., Prasanna, R., Singh, S. B., Kumar, R., & Saha, S. (2017). Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiology Ecology, 93(7), 1–13. https://doi.org/10.1093/femsec/fix066

Weyens, N., Truyens, S., Saenen, E., Boulet, J., Dupae, J., Taghavi, S., van der Lelie, D., Carleer, R., & Vangronsveld, J. (2011). Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. International Journal of Phytoremediation, 13(3), 244–255. https://doi.org/10.1080/15226511003753920

Zhang, Z., Rengel, Z., Chang, H., Meney, K., Pantelic, L., & Tomanovic, R. (2012). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175–176, 1–8. https://doi.org/10.1016/j.geoderma.2012.01.020




DOI: https://doi.org/10.15575/20146

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.