Respon pertumbuhan vegetatif semaian akibat aplikasi mikroba potensial pada rehabilitasi pohon kakao tanpa penebangan


Marliana S. Palad(1), Aminah aminah(2*)

(1) Universitas Cokroaminoto Makassar, Indonesia
(2) Universitas Muslim Indonesia, Indonesia
(*) Corresponding Author

Abstract


Usaha yang dapat dilakukan untuk megatasi penurunan produksi pohon kakao tua dan rusak adalah penerapan inarching grafting atau penyambungan tanaman kakao muda unggul berumur minimal 6 bulan yang ditanam di sekitar pohon tua. Tujuan penelitian ini adalah mengkaji pengaruh aplikasi Trichoderma asperellum dan Azotobacter chroococcum terhadap pertumbuhan vegetatif semaian kakao yang akan disambungkan ke pohon kakao tua menggunakan metode inarching grafting. Penelitian ini menggunakan Rancangan Petak Terbagi dengan tiga ulangan. Petak Utama yaitu aplikasi T.asperellum sebanyak 4 g L-1 setiap tanaman, dengan empat taraf: tanpa T.asperellum (T0), satu kali (T1), dua kali (T2), dan tiga kali (T3) aplikasi. Anak Petak adalah inokulasi A.chroococcum sebanyak 40 ml x 108 cfu setiap tanaman, dengan 3 taraf: tanpa A.chroococcum (A0), satu kali (A1) dan dua kali (A2) aplikasi. Hasil analisis menunjukkan tidak terdapat interaksi antara aplikasi T.asperellum dengan A.chroococcum, tetapi terdapat pengaruh tunggal dari kedua mikroba potensial yang diaplikasikan. Pada umur semaian 90 hst, aplikasi dua kali A.chroococcum menghasilkan rata-rata tinggi tanaman 155,25 cm, total daun 41 helai dan diameter batang 13,10 mm. Pemberian tiga kali T.asperellum menghasilkan rata-rata tinggi tanaman 150,89 cm,  total daun 41,22 helai dan diameter batang 12,86 mm. Semaian yang diberi mikroba potensial digunakan untuk rehabilitasi pohon kakao tua.

 

An efforts that can be done to overcome the decline in production of old and damaged cocoa trees are the application of inarching grafting or grafting of superior young cocoa plants with a minimum age of 6 months planted around old trees. The purpose of this study was to examine the effect of the application of Trichoderma asperellum and Azotobacter chroococcumon the vegetative growth of cocoa seedlings which was grafted to old cocoa trees using the inarching grafting method. The research used a Split Plot Design with three replications. The main plot was application of T.asperellum of 4 g L-1 for each seedling and cocoa tree, consisted of four levels. i.e: without T.asperellum (T0), one time application (T1), two times application (T2), and three times application (T3). The subplot factor was A.chroococcum as much as 40 ml x 108 cfu on each seedling and cocoa tree, consisted of three levels, i.e.: without A. chroococcum (A0), one time application (A1) and two times application (A2).  The analysis of variance results showed that no interaction between applications of T.asperellum  with  A.chroococcum, but it had a singular effect for both potential microbial applied. At 90 days after planting, the application of A.chroococcum twice resulted in an average plant height of 155.25 cm, a total of 41 leaves and a stem diameter of 13.10 mm. Application of T.asperellum three times resulted in an average plant height of 150.89 cm, the number of leaves 41.22 sheets and a stem diameter of 12.86 mm. The seedlings that inoculated with potential microbes can be used for rehabilitation of old cacao trees.


Keywords


Azotobacter chroococcum, inarching grafting, rehabilitasi kakao, Trichoderma asperellum

Full Text:

PDF

References


Abbass, Z. (1993). Physiological properties of Azotobacter paspali in culture and the rhizosphere. 25(8), 1061–1073.

Akanksha Singh, Birinchi K.Sarma, Harikesh B.Singh & R.S.Upadhyay. (2014). Chapter 40 – Trichoderma: A Silent Worker of Plant Rhizosphere. In Biotechnology and Biology of Trichoderma. Elsevier. https://doi.org/10.1016/B978-0-444-59576-8.00040-0

Baroroh, A. U. L., & Setyono, P. (2015). Analisis kandungan unsur hara makro dalam kompos dari serasah daun bambu dan limbah padat pabrik gula ( blotong ). Bioteknologi, 12(November), 46–51. https://doi.org/10.13057/biotek/c120203

Campos, D. T., Zuñiga, C., Passi, A., Del Toro, J., Tibocha-Bonilla, J. D., Zepeda, A., Betenbaugh, M. J., & Zengler, K. (2020). Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ: Genome-scale metabolic modeling of Azotobacter vinelandii DJ. Metabolic Engineering Communications, 11(January). https://doi.org/10.1016/j.mec.2020.e00132

Chennappa, G., Naik, M. K., Amaresh, Y. S., Nagaraja, H., & Sreenivasa,

M. Y. (2017). A Potential Biofertilizer and Bioinoculants for Sustainable Agriculture. In D.G. Panpatte et al. (Ed.), Microorganisms for Green Revolution (pp. 87–106). Springer, Singapore.

El-serafy, R. S., & El-sheshtawy, A. A. (2020). Scientia Horticulturae E ff ect of nitrogen fi xing bacteria and moringa leaf extract on fruit yield , estragole content and total phenols of organic fennel. Scientia Horticulturae, 265(April 2019),109209. https://doi.org/10.1016/j.scienta.2020.109209

Erida Nurahmi., Susanna., & Rina Sriwati. (2012). Pengaruh Trichoderma terhadap perkecambahan dan pertumbuhan bibit kakao, tomat, dan kedelai. J. Floratek, 7, 57–65.

Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., & Reitz, T. (2016). Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiology, 7(SEP), 1–16. https://doi.org/10.3389/fmicb.2016.01446

Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems (2nd ed.). CABI_Publishing. https://books.google.co.id/books?id=0eg5jf8MllEC&printsec=frontcover&hl=id#v=onepage&q&f=false

Hasan, K. U. (2019). Effect of the biofertilizer (Azotobacter chroococcum & Trichoderma harzianum) and levels of phosphate rock and yield of wheat (Triticum aestivum L.). 19(2), 4264–4268.

Hermosa, R., Viterbo, A., Chet, I., Monte, E., & Monte, E. (2012). Mini-Review Plant-beneficial effects of Trichoderma and of its genes. 158, 17–25. https://doi.org/10.1099/mic.0.052274-0

Juradi, M. A., Tando, E., & Suwitra, K. (2019). Inovasi teknologi pemanfaatan limbah buah kakao (Theobroma cacao L.) sebagai pupuk organik. Agroradix, 2(2), 9–17.

Kumaeasan, G., Karthikeyan, B., & Shanthi, R. (2019). Effect of different formulations of Azotobacter bioinoculantonthegrowthandyieldofmaize. Plant Archives, 19(2), 3077–3081.

Lomban, Y. J., & Baroleh, J. (2017). Sikap kelompok tani terhadap gerakan nasional kakao di Kabupaten Bolaang Mongondow Utara. Agri-Sosio Ekonomi Unsrat, 13, 209–218.

Milton, R. D., Cai, R., Sahin, S., Abdellaoui, S., Alkotaini, B., Leech, D., & Minteer, S. D. (2017). The in Vivo Potential-Regulated Protective Protein of Nitrogenase in Azotobacter vinelandii Supports Aerobic Bioelectrochemical Dinitrogen Reduction in Vitro. Journal of the American Chemical Society, 139(26), 9044–9052. https://doi.org/10.1021/jacs.7b04893

Nasaruddin;, & Musa, Y. (2012). Nutrisi Tanaman. Masagena Press.

Palad, M. S., Ala, A., & Nasaruddin. (2016). Effectiveness Trichoderma asperellum on the Growth Cocoa Seeds under the Old Cocoa Trees. Modern Applied Science, 10(11), 176–180. https://doi.org/10.5539/mas.v10n11p176

Prashar, P., & Vandenberg, A. (2017). Genotype-specific responses to the effects of commercial Trichoderma formulations in lentil ( Lens culinaris ssp . culinaris ) in the presence and absence of the oomycete pathogen Aphanomyces euteiches. Biocontrol Science and Technology, 3157(November), 1123–1144. https://doi.org/10.1080/09583157.2017.1376035

Pratap, S., Pandey, S., Mishra, N., Prakash, V., Mahfooz, S., Bhattacharya, A., Kumari, M., & Chauhan, P. (2019). Plant Physiology and Biochemistry Supplementation of Trichoderma improves the alteration of nutrient allocation and transporter genes expression in rice under nutrient de fi ciencies. Plant Physiology and Biochemistry, 143(December 2018), 351–363. https://doi.org/10.1016/j.plaphy.2019.09.015

Pusat Penelitian Kopi dan Kakao Indonesa. (2010). Budidaya Kakao. AgroMedia Pustaka. https://agromedia.net/katalog/buku-pintar-budi-daya-kakao/

Saba, H., Vibhash, D., Manisha, M., Ks, P., Farhan, H., & Tauseef, A. (2012). Trichoderma – a promising plant growth stimulator and biocontrol agent. Mycosphere, 3(4), 524–531. https://doi.org/10.5943/mycosphere/3/4/14

Sheila, A., Jane, A., & James, O. (2011). IMPROVED SEEDLING EMERGENCE AND GROWTH OF MAIZE AND BEANS BY Trichoderma harziunum. Tropical and Subtropical Agroecosystems, 13, 65–71.

Sodiq, A. H., Setiawati, M. R., Santosa, D. A., & Widayat, D. (2019). The potency of bio-organic fertilizer containing local microorganism of Cibodas village, Lembang-West Java. IOP Conference Series: Earth and Environmental Science, 383(1). https://doi.org/10.1088/1755-1315/383/1/012001

Srinivasarao, C., & Manjunath, M. (2017). Potential of beneficial bacteria as eco-friendly options for chemical-free alternative agriculture. Plant-Microbe Interactions in Agro-Ecological Perspectives, 2, 473–493. https://doi.org/10.1007/978-981-10-6593-4_19

Taller, B. J., & Wong, T. (1989). Cytokinins in Azotobacter vinelandii Culture Medium. 55(1), 266–267.

Velmourougane, K., & Prasanna, R. (2017). Modulating rhizosphere colonisation , plant growth , soil nutrient availability and plant defense enzyme activity through Trichoderma viride - Azotobacter chroococcum biofilm inoculation in chickpea. Plant Soil.

Wani, S. A., Chand, S., & Ali, T. (2013). Potential Use of Azotobacter chroococcum in Crop Production : An Overview. Current Agriculture Research Journal, 1(1), 35–38.




DOI: https://doi.org/10.15575/9098

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.