Mapping Opinion Networks: An Interaction Network Analysis of Commenters on Narasi Newsroom's "Weda Bay Nickel Downstreaming" YouTube Video

Mapping Opinion Networks: An Interaction Network Analysis of Commenters on Narasi Newsroom's "Weda Bay Nickel Downstreaming" YouTube Video

Authors

  • Az-zahra Mutiara Syofi Ramadhina Department Communication, Universitas Padjadjaran
  • Lovie Harleyna Murti Department Communication, Universitas Padjadjaran
  • Gema Nusantara Bakry Department Communication, Universitas Padjadjaran

DOI:

https://doi.org/10.15575/ks.v7i4.47144

Keywords:

Naïve Bayes, Nickel, Sentiment, SNA, Weda, YouTube

Abstract

Indonesia is the world's largest producer of nickel reserves. The government has implemented a nickel downstreaming policy to increase the added value of this commodity. One of the centres of nickel downstreaming is Weda Bay in North Maluku, which has recorded significant economic growth. Behind this financial success, nickel downstreaming has harmed social and environmental aspects. These impacts have triggered various responses from the community, many of which have been channelled through social media such as YouTube. This study analyses the network of public opinion in the comments section of the YouTube video “The Curse of Weda Bay Nickel Downstreaming (PART 1)” by Narasi Newsroom using the Social Network Analysis (SNA) method with Gephi 0.10 software and reviews negative, positive, and neutral sentiments using the Naïve Bayes model through Google Colab. The network analysis results show a diameter of 2, density of 0.000 (very low), and modularity of 0.838 (high), indicating that interactions between users are rare and that there are separate communities. Centrality measurements (degree, betweenness, closeness, and eigenvector) show @knowledgeid970 and @kadyrov12373 as the leading and most influential actors in the comment network. Naïve Bayes sentiment analysis shows that 52.49% of comments have negative sentiment, 26.45% are neutral, and only 21.06% are positive. The data needs to be balanced using SMOTE, and more accurate models need to be explored. Negative sentiment is dominated by concerns about environmental impacts such as deforestation, pollution, and pressure on clean water supplies due to nickel downstreaming.

References

Albab, M. H., Sari, A. D. F., Asrizal, S. N., & Kurniawan, R. (2024). Analisis Sentimen Penggunaan Kendaraan Listrik terhadap Lingkungan di Indonesia dengan Pendekatan Machine Learning. Seminar Nasional Sains Data, 2024.

Bakry, G. N. (2023). Analisis jejaring sosial gempa Cianjur di Twitter sebagai mitigasi dampak bencana. Jurnal Studi Komunikasi (Indonesian Journal of Communications Studies), 7(3), 977–993. https://doi.org/10.25139/jsk.v7i3.5826

Benevenuto, F., Duarte, F., Rodrigues, T., Almeida, V., Almeida, J., & Ross, K. (2008). Understanding Video Interactions in YouTube. ACM Digital Library, 1176.

Benevenuto, F., Rodrigues, T., Almeida, V., Almeida, J., & Ross, K. (2009). Video interactions in online video social networks. ACM Transactions on Multimedia Computing, Communications and Applications, 5(4). https://doi.org/10.1145/1596990.1596994

Bidul, S., & Widowaty, Y. (2024). Analisis Yuridis Dampak Pencemaran Lingkungan Pertambangan Mangan dan Nikel di Provinsi Maluku Utara. JUSTISI, 9(3), 412–426. https://doi.org/10.33506/js.v9i3.2768

Boro, C. L. T., Faisol, A., & Rudhistiar, D. (2025). ANALISIS SENTIMEN TERHADAP KAMPANYE PENGURANGAN PLASTIK PADA MEDIA SOSIAL MENGGUNAKAN METODE SVM. Jurnal Informatika Teknologi Dan Sains, 7(1), 147–157.

Boyd, D. (2015). Social Media: A Phenomenon to be Analyzed. Social Media and Society, 1(1). https://doi.org/10.1177/2056305115580148

Christina Prell. (2012). Social network analysis: History, theory and methodology. Sage.

Clark-Ginsberg, A., Balagna, J., Nam, C. S., Casagrande, M., & Wilkinson, O. (2022). Humanitarian policymaking as networked governance: social network analysis of the Global Compact on Refugees. Journal of International Humanitarian Action, 7(1). https://doi.org/10.1186/s41018-022-00130-1

Dubois, E., & Blank, G. (2018). The echo chamber is overstated: the moderating effect of political interest and diverse media. Information Communication and Society, 21(5), 729–745. https://doi.org/10.1080/1369118X.2018.1428656

Fahmi, D. Y., Hartoyo, & Zulbainarni, N. (2021). Mining Social Media (Twitter) Data for Corporate Image Analysis: A Case Study in the Indonesian Mining Industry. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1811/1/012107

Garimella, K., Morales, G. D. F., Gionis, A., & Mathioudakis, M. (2018). Political discourse on social media: Echo chambers, gatekeepers, and the price of bipartisanship. The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018, 913–922. https://doi.org/10.1145/3178876.3186139

Geological Survey, U. (2024). Mineral Commodity Summaries.

Habibi, M. N., & Sunjana. (2019). Analysis of Indonesia Politics Polarization before 2019 President Election Using Sentiment Analysis and Social Network Analysis. International Journal of Modern Education and Computer Science, 11(11), 22–30. https://doi.org/10.5815/ijmecs.2019.11.04

IWIP: PT Indonesia Weda Bay Industrial Park. (2018). Https://Iwip.Co.Id/ .

Joviansyah, M. H., Alyssa, L. N., Rahadatul’aisy, I. S., Bakry, G. N., & Aristi, N. (2023). Analisis Sentimen dan Jaringan Komentar Video Youtube Najwa Shihab “Piala Dunia U-20 Gagal Digelar Di Indonesia. Mari Lihat Dari Dua Prespektif.” Jurnal Komunikasi Dan Media, 04(01), 1–14.

Kumar, S., Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2018). Community Interaction and Conflict on the Web. The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018, 933–943. https://doi.org/10.1145/3178876.3186141

Kurniawan, A. R., Murayama, T., & Nishikizawa, S. (2021). Appraising affected community perceptions of implementing programs listed in the environmental impact statement: A case study of Nickel smelter in Indonesia. The Extractive Industries and Society, 8(1), 363–373. https://doi.org/10.1016/j.exis.2020.11.015

Merdiansah, R., Siska, & Ridha, A. A. (2024). Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI, 7(1), 221–228.

Mulyani, H. S., Bakry, G. N., & Kusmayadi, I. M. (2022). STORYTELLING WITH NETWORK DATA VISUALIZATION HASHTAG #PRAYFORTURKEY ON TWITTER. Journal of New Zealand Studies, 34. https://doi.org/10.5281/zenodo.7306374

Nanayakkara, A. C., Kumara, B. T. G. S., & Tharanga Rathnayaka, R. M. K. (2024). Examining Information Diffusion Patterns in YouTube Comment Networks, A Social Network Analysis Approach. 9th International Conference on Information Technology Research (ICITR), 1–6. https://doi.org/10.1109/ICITR64794.2024.10857779

Radhica, D. D., & Wibisana, R. A. A. (2023). Proteksionisme Nikel Indonesia dalam Perdagangan Dunia. Cendekia Niaga Journal of Trade Development and Studies.

Rajani, A., & Hasugian, A. H. (2025). Sentiment Analysis on the Planned Nickel Mining Development in Raja Ampat Using the Random Forest Algorithm. Jatilima : Jurnal Multimedia Dan Teknologi Informasi, 07. https://doi.org/10.54209/jatilima.v7i03.1565

Rauf, B. W. (2023). Sentimen Analisis Pertambangan Di Konawe Utara Dengan Metode Naïve Bayes. PROSIDING SEMINAR NASIONAL PEMANFAATAN SAINS DAN TEKNOLOGI INFORMASI, 1(1), 1–5. https://t.co/fSdh2dCADm

Rulli Nasrullah. (2015). Media Sosial: Perspektif Komunikasi, Budaya, dan Sosioteknologi. Simbiosa Rekatama.

Saputra, A. R., Faliana, C., Durahman, M. A., & Ginting, P. (2023). Dilema Halmahera di Tengah Industri Nikel. Perkumpulan Aksi Ekologi Dan Emansipasi Rakyat (AEER). http://aeer.or.id

Setiawan, R., & Fadlhia, M. N. (2025). Green But Extractive: Diplomasi Hilirisasi Nikel Indonesia Dan Politik Eksklusi Sosial Di Weda Bay. JISPOL : Jurnal Ilmu Sosial Dan Politik. https://doi.org/10.51622

Shajari, S., Agarwal, N., & Alassad, M. (2023). Commenter Behavior Characterization on YouTube Channels. Cornell University.

Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. In Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Vol. 8, Issue 5). Wiley-Blackwell. https://doi.org/10.1002/widm.1256

Utami, S. R., Safitri, R. N., & Kuncoroyakti, Y. A. (2021). Analisis Jaringan dan Aktor #BatalkanOmnibusLaw di Media Sosial Twitter Menggunakan Social Network Analysis (SNA). Jcommsci: Journal Of Media and Communication Science, 4(3), 135–148.

Wijaya, W. V., Suaib, N. R., Sunarto, S. A., & Maulidina, C. P. (2024). Literature Review: Tinjauan Social Network Analysis Dalam Konteks Climate Change. Jurnal Komunikasi, Masyarakat Dan Keamanan (KOMASKAM).

Downloads

Published

2025-11-26
Loading...