On The Edge Irregularity Strength of Firecracker Graphs F2,m


Rismawati Ramdani(1*), Desi Laswati Suwandi(2)

(1) Scopus ID: 55851423500, Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung, Indonesia
(2) ,  
(*) Corresponding Author

Abstract


Let  be a graph and k be a positive integer. A vertex k-labeling  is called an edge irregular labeling if there are no two edges with the same weight, where the weight of an edge uv is . The edge irregularity strength of G, denoted by es(G), is the minimum k such that  has an edge irregular k-labeling. This labeling was introduced by Ahmad, Al-Mushayt, and Bacˇa in 2014.  An (n,k)-firecracker is a graph obtained by the concatenation of n k-stars by linking one leaf from each. In this paper, we determine the edge irregularity strength of fireworks graphs F2,m.


Keywords


edge irregular labeling, firecracker, the edge irregularity strength

Full Text:

PDF

References


M. Bača, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007.

G. Chartrand, P. Erdös, and O. R. Oellermann, “How to define an irregular graph,” Coll. Math. J., vol. 19, no. 1, pp. 36–42, 1988.

A. Ahmad, O. B. S. Al-Mushayt, and M. Bača, “On edge irregularity strength of graphs,” Appl. Math. Comput., vol. 243, pp. 607–610, 2014.

M. Imran, A. Aslam, S. Zafar, and W. Nazeer, “Further results on edge irregularity strength of graphs,” Indones. J. Comb., vol. 1, no. 2, pp. 82–91, 2017.

I. Tarawneh, R. Hasni, and A. Ahmad, “On the edge irregularity strength of corona product of cycle with isolated vertices,” AKCE Int. J. Graphs Comb., vol. 13, no. 3, pp. 213–217, 2016.

A. Ahmad, M. A. Asim, B. Assiri, and A. Semaničová-Feňovčíková, “Computing the Edge Irregularity Strength of Bipartite Graphs and Wheel Related Graphs,” Fundam. Informaticae, vol. 174, no. 1, pp. 1–13, 2020.

A. Ahmada, A. Guptaa, and R. Simanjuntakb, “Computing the edge irregularity strengths of chain graphs and the join of two graphs,” Electron. J. Graph Theory Appl., vol. 6, no. 1, pp. 201–207, 2018.

M. A. Asim, A. Ahmad, and R. Hasni, “Edge irregular k-labeling for several classes of trees,” Util. Math, vol. 111, pp. 75–83, 2019.

I. Tarawneh, R. Hasni, and M. A. Asim, “On the edge irregularity strength of disjoint union of star graph and subdivision of star graph.,” Ars Comb., vol. 141, pp. 93–100, 2018.

I. Tarawneh, R. Hasni, A. Ahmad, and M. A. Asim, “On the edge irregularity strength for some classes of plane graphs,” AIMS Math, vol. 6, pp. 2724–2731, 2021.




DOI: https://doi.org/10.15575/kubik.v7i1.18430

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rismawati Ramdani, Desi Laswati Suwandi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.