Vertex Labeled Energy of Edge-Removed Complete Graphs


Salwa Nursyahida(1*), Salsabiil Rana(2), Esih Sukaesih(3)

(1) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(2) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(3) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(*) Corresponding Author

Abstract


Suppose Γ is vertex labeled graph by its degree. The (i,j)-th entry of vertex labeled matrix of Γ is label sum of different vertices v_i  and v_j  if there are paths between them, and 0 otherwise. Vertex labeled energy of Γ is absolute sum of its vertex labeled matrix eigenvalues. In this paper, we provide value of vertex labeled energy of edge-removed complete graph.


Keywords


vertex labeled graph, vertex labeled matrix, vertex labeled energy, edge-removed complete graph, eigenvalues

Full Text:

PDF

References


Ivan Gutman, “The Energy of a Graph,” Ber. Math.— Statist. Sekt. Forschungsz. Graz, vol. 103, pp. 1–22, 1978.

I. Gutman and B. Zhou, “Laplacian energy of a graph,” Linear Algebra Appl, vol. 414, no. 1, pp. 29–37, Apr. 2006, doi: 10.1016/j.laa.2005.09.008.

G. Indulal, I. Gutman, and A. Vijayakumar, “On Distance Energy of Graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 60, pp. 461–472, 2008.

I. Gutman, B. Furtula, and Ş. B. Bozkurt, “On Randić energy,” Linear Algebra Appl, vol. 442, pp. 50–57, Feb. 2014, doi: 10.1016/j.laa.2013.06.010.

I. Gutman, I. Redzepovic, and J. Rada, “Relating Energy and Sombor Energy,” Contributions to Mathematics, vol. 4, pp. 41–44, Dec. 2021, doi: 10.47443/cm.2021.0054.

P. G. Bhat and S. D’souza, “ENERGY OF BINARY LABELED GRAPHS,” 2013. [Online]. Available: www.ui.ac.ir

K. Permi, Y. R. L. Indrani, and K. N. Prakasha, “Vertex labeled graph energy,” Journal of Mathematical and Computational Science, 2022, doi: 10.28919/jmcs/6691.

P. Heggernes and F. Mancini, “Minimal split completions,” Discrete Appl Math (1979), vol. 157, no. 12, pp. 2659–2669, Jun. 2009, doi: 10.1016/j.dam.2008.08.010.

P. Petersen, Linear Algebra. New York, NY: Springer New York, 2012. doi: 10.1007/978-1-4614-3612-6.

R. Diestel, Graph Theory, vol. 173. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-53622-3.

N. Biggs, Algebraic Graph Theory. Cambridge University Press, 1974. doi: 10.1017/CBO9780511608704.

S. R. Garcia and R. A. Horn, “Block Matrices in Linear Algebra,” PRIMUS, vol. 30, no. 3, pp. 285–306, Mar. 2020, doi: 10.1080/10511970.2019.1567214.

D. Acharjya and Sreekumar, Fundamental Approach to Discrete Mathematics. 2008.

Y. Chen and Y. Liao, “Rank of a matrix of block graphs,” Int J Quantum Chem, vol. 121, no. 18, Sep. 2021, doi: 10.1002/qua.26748.

Solomon Dinkevich, Explicit block diagonal decomposition of block matrices corresponding to symmetric and regular structures of finite size. United States, 1986.




DOI: https://doi.org/10.15575/kubik.v8i1.30073

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Salwa Nursyahida, Salsabiil Rana, Esih Sukaesih

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.