Pengelompokan Kabupaten/Kota Berdasarkan Produksi Tanaman Pangan Sumatera Utara Tahun 2020 Menggunakan Pengelompokan Hirarki Aglomeratif

Afdhah Nur Riadhoh, Galuh Eka Puspita, Inas Rafidah, Edy Widodo

Abstract


Food plants are one of the basic needs of humans as a source of energy because they contain carbohydrates and proteins that are important for the human body. North Sumatra is one of the provinces in Indonesia, known for high potential in the agricultural sector, such as food crops. However, each district/city has a very diverse amount of food crop production in North Sumatra, so it is necessary to grouping in districts/cities based on the high and low of food crop production commodities in North Sumatra  with the aim of assisting government in improving and optimizing government programs that engaged in agriculture. The grouping used agglomerative hierarchical cluster analysis methods, namely single linkage, average linkage, complete linkage, ward's, and centroid methods. Based on the highest cophenetic correlation value (close to 1), it was found that average linkage was the best cluster method. The results of this study that North Sumatra Province is divided into 4 clusters, consisting of regencies/cities, which can be seen from each food crop production in the very high category, the production of food crops in the high category, the production of food crops in the low category, and the production of food crops in the very low category.


Keywords


Agglomerative, Cluster Analysis, Food Crops

References


R. Iyan, “Analisis Komoditas Unggulan Sektor Pertanian Di Wilayah Sumatera”, Jurnal Sosial Ekonomi Pembangunan, 4:216, 2014

Y. Sugiyani, “Pengelompokan Wilayah Berdasarkan Potensi Hasil Pertanian Menggunakan Algoritma K-means Di Kota Cilegon”, Jurnal ProTekInfo, 3:60, 2016

Dosen Pertanian, “Pengertian Tanaman Pangan, Jenis, Manfaat, dan Contohnya”, https://dosenpertanian.com/tanaman-pangan/ [diakses 12 Oktober 2021]

N. Ulinnuh, dan R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage, Average Linkage dan Ward”, InfoTekJar:Jurnal Nasional Informatika dan Teknologi Jaringan, 5:102-103, 2020

N. Salwa, Nurhasanah, dan Salmiati, “Penggunaan Metode Ward dalam Pengelompokan Kabupaten/Kota di Provinsi Aceh Berdasarkan Indikator Tanaman Pangan dan Perkebunan”, Statistika, 18:71-83, 2018

D. Widyadhana, R. B. Hastuti, I. Kharisudin, dan F. Fauzi, “Perbandingan Analisis Klaster K-Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah”, Prosiding Seminar Nasional Matematika 4 2021 (PRISMA 4 2021), 17 Oktober 2020, Semarang, Indonesia, pp. 584-594

T. F. Larasati, “Perbandingan Kinerja Metode Complete Linkage, Metode Average Linkage, Dan Metode K-Means Dalam Menentukan Hasil Analisis Cluster”, Skripsi, Universitas Negeri Yogyakarta, Yogyakarta, 2014, pp. 26-60

R. A. Johnson, and D. W. Wichern, “Applied Multivariate Statistical Analysis”, Penerbit Prentice Hall, New Jersey, 2007, pp. 680-690

Sukmawati, “Pengelompokkan Kabupaten/Kota Berdasarkan Faktor-Faktor Yang Mempengaruhi Gizi Buruk Di Jawa Timur Dengan Menggunakan Metode Ward’s”, Skripsi, Universitas Islam Negeri Alaudin Makassar, Makassar, 2017, pp. 7-18

R. Silvi, “Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokan Indikator HIV/AIDS di Indonesia”, Jurnal Matematika (Mantik), 4: 23, 2018

P. U. Gio, dan E. Rosmaini, “Belajar Olah Data dengan SPSS, Minitab, R, Microsoft, Excel, Eviews, Lisrel, Amos, dan Smartpls”, Penerbit USU Press, Medan, 2016, p. 181

https://sumut.bps.go.id/subject/53/tanaman-pangan.html#subjek View Tab3 [diakses 30 Oktober 2021]

Kementerian Pertanian Republik Indonesia, “Inilah 10 Besar Provinsi Penghasil Beras”, https://www.pertanian.go.id/home/?show=news&act=view&id=4425 [diakses 5 November 2021]




DOI: https://doi.org/10.15575/kubik.v6i2.16157

Refbacks

  • There are currently no refbacks.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by