Deteksi Covid-19 Menggunakan Citra X-Ray Metode Gray Level Co-Occurrence Matrix (GLCM) dan Adaptive Neuro Fuzzy Inference System (ANFIS)
Keywords:
Adaptive Neuro Fuzzy Inference System, COVID-19, Gray-Level Co-Occurrence MatrixAbstract
The first detected COVID-19 was in China, this virus has spread worldwide rapidly. COVID-19 is caused by the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Corona Virus-2) or an acute infection that attacks the respiratory system. COVID-19 examination can be carried out by X-rays. The X-ray images will be identified using a CAD system or Computer-Aided Diagnosis. CAD has three processes consisting of preprocessing, feature extraction, and classification. This study compares 200 X-ray image data of COVID-19 data and 200 X-ray image data of non-COVID-19 data. Both groups of data were divided using the K-fold Cross Validation method where the K value used is 10 so that the distribution of training data is 90% and testing is 10%. The epoch used is 5 with 4 parameters (contrast, correlation, energy, and homogeneity). In the feature extraction process, GLCM is used by comparing every angle in the feature extraction, while Adaptive Neuro Fuzzy Inference System (ANFIS) is used for classification. The best results were obtained from GLCM at an angle of 0° with an accuracy value of 0.90, a sensitivity of 0.85 and a specificity of 0.95. This shows that the use of GLCM and ANFIS for COVID-19 detection performs well.
References
W.H. Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020 (No. WHO/COVID19/laboratory/2020.4). World Health Organization, 2020.
H. Chaolin., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., and Cao, B. "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, Chinaâ€. The Lancet, 395(10223):497–506, 2020.
R Liu, K. C., Xu, P., Lv, W. F., Qiu, X. H., Yao, J. L., Gu, J. F., and Wei, W. "CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity". European Journal of Radiology, 126(February):108941, 2020.
P. Boldog., Tekeli, T., Vizi, Z., Denes, A., Bartha, F. A., and R ´ ost, G. Risk ¨ "Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China". Journal of Clinical Medicine, 9(2):571. 2020.
Z.Y. Zu, Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., and Zhang, L. J. H13. Coronavirus Disease 2019 (COVID-19): A Perspective from ChinaZu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). H13. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 200490. https://doi. Radiology, 2019:200490. 2020.
D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J Zhang., B. Wang, Xiang, H. Xiang, Z. Cheng, Y Xiong., Y. Zhao, Y. Li, X. Wang, and Z. Peng. "Hospitalized Patients with 2019 Novel CoronavirusInfected Pneumonia in Wuhan, China". JAMA - Journal of the American Medical Association, 323(11):1061–1069. 2020.
W. H. Self, D. M. Courtney, C. D. McNaughton, R. G. Wunderink, and J. A. Kline. (2013). "High discordance of chest x-ray and computed tomography detection of pulmonary opacities in ED patients: Implications for diagnosing pneumonia". American Journal of Emergency Medicine, 31(2):401–405.
S. Punitha., A. Amuthan, and K. S. Joseph. "Benign and malignant breast cancer segmentation using optimized region growing technique". Future Computing and Informatics Journal, 3(2):348–358, 2018.
S. Mishra, B. Majhi, P. K. Sa, and L. Sharma. "Gray level cooccurrence matrix and random forest based acute lymphoblastic leukemia detection". Biomedical Signal Processing and Control, 33:272–280, 2017.
N. Neneng, K. Adi, and R. Isnanto. "Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM)". Jurnal Sistem Informasi Bisnis, 6(1):1, 2016.
A. Selvapandian and K. Manivannan, “Fusion based glioma brain tumor detection and segmentation using ANFIS classification,†Comput. Methods Programs Biomed., vol. 166, pp. 33–38, 2018.
G. Xian, “An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM,†Expert Syst. Appl., vol. 37, no. 10, pp. 6737–6741, 2010.
V.U.M. Maksum, “Klasifikasi data citra X-Ray Covid-19 Menggunakan Metode GLCM dan Extreme Learning Machine (ELM)†UIN Sunan Ampel Surabaya, 2021.
R. A. Surya, A. Fadlil, and A. Yudhana, “Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor untuk Klasifikasi citra Batik Pekalongan,†J. Inform. J. Pengemb. IT, vol. 2, no. 2, pp. 23–26, 2017.
R. Widodo, A. W. Widodo, and A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.
D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae),†Innov. Res. Informatics, vol. 1, no. 2, 2019.
M. I. Azhar and W. F. Mahmudy, “Prediksi Curah Hujan Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),†J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.
D. C. Rini, U. Khasanah, W. D. Utami, and P. K. Intan, “Analisis Peramalan Beban Listrik Jangka Pendek Menggunakan Metode Adaptive Neuro Fuzzy Inference System,†MathVisioN, vol. 1, no. 1, pp. 17–24, 2019.
R. A. Mahessya and S. Indrawati, “Implementasi Metode Anfis Data Mining dalam Menyeleksi Beasiswa di SMPN 7 Sorolangun,†J. Process., vol. 12, no. 1, pp. 904–915, 2018.
A. Luque, A. Carrasco, A. MartÃn, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,†Pattern Recognit., vol. 91, pp. 216–231, 2019.
J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: a measure driven view,†Inf. Sci. (Ny)., vol. 507, pp. 772–794, 2020.
I. Puspita and A. M. Abadi, “Diagnosing Heart Disease using Wavelet Transformation and Adaptive Neuro Fuzzy Inference System (ANFIS) Based on Electrocardiagram (ECG),†EKSAKTA J. Sci. Data Anal., vol. 19, no. 1, pp. 71–82, 2019.
F. Ghali, “Skin Cancer Diagnosis by Using Fuzzy Logic and GLCM,†in Journal of Physics: Conference Series, 2019, vol. 1279, no. 1, p. 12020.
Downloads
Published
Issue
Section
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â