Deteksi Covid-19 Menggunakan Citra X-Ray Metode Gray Level Co-Occurrence Matrix (GLCM) dan Adaptive Neuro Fuzzy Inference System (ANFIS)


Fitri Mellynia Astiti(1*), Noormann Atoillah(2), Rahmat Rizki Sinulingga(3), Achmad Room Fitrianto(4)

(1) Universitas Islam Negeri Sunan Ampel Surabaya, Indonesia
(2) Universitas Islam Negeri Sunan Ampel Surabaya, Indonesia
(3) Universitas Islam Negeri Sunan Ampel Surabaya, Indonesia
(4) Universitas Islam Negeri Sunan Ampel Surabaya, Indonesia
(*) Corresponding Author

Abstract


The first detected COVID-19 was in China, this virus has spread worldwide rapidly. COVID-19 is caused by the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Corona Virus-2) or an acute infection that attacks the respiratory system. COVID-19 examination can be carried out by X-rays. The X-ray images will be identified using a CAD system or Computer-Aided Diagnosis. CAD has three processes consisting of preprocessing, feature extraction, and classification. This study compares 200 X-ray image data of COVID-19 data and 200 X-ray image data of non-COVID-19 data. Both groups of data were divided using the K-fold Cross Validation method where the K value used is 10 so that the distribution of training data is 90% and testing is 10%. The epoch used is 5 with 4 parameters (contrast, correlation, energy, and homogeneity). In the feature extraction process, GLCM is used by comparing every angle in the feature extraction, while Adaptive Neuro Fuzzy Inference System (ANFIS) is used for classification. The best results were obtained from GLCM at an angle of 0° with an accuracy value of 0.90, a sensitivity of 0.85 and a specificity of 0.95. This shows that the use of GLCM and ANFIS for COVID-19 detection performs well.


Keywords


Adaptive Neuro Fuzzy Inference System, COVID-19, Gray-Level Co-Occurrence Matrix

References


W.H. Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020 (No. WHO/COVID19/laboratory/2020.4). World Health Organization, 2020.

H. Chaolin., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., and Cao, B. "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China”. The Lancet, 395(10223):497–506, 2020.

R Liu, K. C., Xu, P., Lv, W. F., Qiu, X. H., Yao, J. L., Gu, J. F., and Wei, W. "CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity". European Journal of Radiology, 126(February):108941, 2020.

P. Boldog., Tekeli, T., Vizi, Z., Denes, A., Bartha, F. A., and R ´ ost, G. Risk ¨ "Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China". Journal of Clinical Medicine, 9(2):571. 2020.

Z.Y. Zu, Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., and Zhang, L. J. H13. Coronavirus Disease 2019 (COVID-19): A Perspective from ChinaZu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). H13. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 200490. https://doi. Radiology, 2019:200490. 2020.

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J Zhang., B. Wang, Xiang, H. Xiang, Z. Cheng, Y Xiong., Y. Zhao, Y. Li, X. Wang, and Z. Peng. "Hospitalized Patients with 2019 Novel CoronavirusInfected Pneumonia in Wuhan, China". JAMA - Journal of the American Medical Association, 323(11):1061–1069. 2020.

W. H. Self, D. M. Courtney, C. D. McNaughton, R. G. Wunderink, and J. A. Kline. (2013). "High discordance of chest x-ray and computed tomography detection of pulmonary opacities in ED patients: Implications for diagnosing pneumonia". American Journal of Emergency Medicine, 31(2):401–405.

S. Punitha., A. Amuthan, and K. S. Joseph. "Benign and malignant breast cancer segmentation using optimized region growing technique". Future Computing and Informatics Journal, 3(2):348–358, 2018.

S. Mishra, B. Majhi, P. K. Sa, and L. Sharma. "Gray level cooccurrence matrix and random forest based acute lymphoblastic leukemia detection". Biomedical Signal Processing and Control, 33:272–280, 2017.

N. Neneng, K. Adi, and R. Isnanto. "Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM)". Jurnal Sistem Informasi Bisnis, 6(1):1, 2016.

A. Selvapandian and K. Manivannan, “Fusion based glioma brain tumor detection and segmentation using ANFIS classification,” Comput. Methods Programs Biomed., vol. 166, pp. 33–38, 2018.

G. Xian, “An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM,” Expert Syst. Appl., vol. 37, no. 10, pp. 6737–6741, 2010.

V.U.M. Maksum, “Klasifikasi data citra X-Ray Covid-19 Menggunakan Metode GLCM dan Extreme Learning Machine (ELM)” UIN Sunan Ampel Surabaya, 2021.

R. A. Surya, A. Fadlil, and A. Yudhana, “Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor untuk Klasifikasi citra Batik Pekalongan,” J. Inform. J. Pengemb. IT, vol. 2, no. 2, pp. 23–26, 2017.

R. Widodo, A. W. Widodo, and A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.

D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae),” Innov. Res. Informatics, vol. 1, no. 2, 2019.

M. I. Azhar and W. F. Mahmudy, “Prediksi Curah Hujan Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.

D. C. Rini, U. Khasanah, W. D. Utami, and P. K. Intan, “Analisis Peramalan Beban Listrik Jangka Pendek Menggunakan Metode Adaptive Neuro Fuzzy Inference System,” MathVisioN, vol. 1, no. 1, pp. 17–24, 2019.

R. A. Mahessya and S. Indrawati, “Implementasi Metode Anfis Data Mining dalam Menyeleksi Beasiswa di SMPN 7 Sorolangun,” J. Process., vol. 12, no. 1, pp. 904–915, 2018.

A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: a measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, 2020.

I. Puspita and A. M. Abadi, “Diagnosing Heart Disease using Wavelet Transformation and Adaptive Neuro Fuzzy Inference System (ANFIS) Based on Electrocardiagram (ECG),” EKSAKTA J. Sci. Data Anal., vol. 19, no. 1, pp. 71–82, 2019.

F. Ghali, “Skin Cancer Diagnosis by Using Fuzzy Logic and GLCM,” in Journal of Physics: Conference Series, 2019, vol. 1279, no. 1, p. 12020.

https://www.kaggle.com/c/siim-covid19-detection


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Fitri Mellynia Astiti, Noormann Atoillah, Rahmat Rizki Sinulingga, Achmad Room Fitrianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.