Model Konvensional Satu Titik untuk Mengoptimalkan Masalah Transportasi Fuzzy Trapesium


A Mujtaba(1*), Ai Munirotusy Syariah(2), Ain Fitriyani Patimah(3), Elis Ratna Wulan(4)

(1) Universitas Islam Negeri Sunan Gunung Djati, Indonesia
(2) Universitas Islam Negeri Sunan Gunung Djati, Indonesia
(3) Universitas Islam Negeri Sunan Gunung Djati, Indonesia
(4) Universitas Islam Negeri Sunan Gunung Djati, Indonesia
(*) Corresponding Author

Abstract


Solving fuzzy trapezoidal transportation problem can use a one-point approach to obtain the optimal solution. The one-point method transforms the four points of the trapezoidal number into crisp transportation problems. This method comes with a minimum approach of supply and demand. In the end, these solutions are combined to obtain the optimal solution. The modified distribution is applied to each crisp problem to develop an optimal solution. The presented scheme is compared with competitive methods available in the literature and found to have good coordination with these methods. 


Keywords


One point approach, Trapezoidal fuzzy numbers, Minimum demand supply, Modified distribution, Fuzzy transportation problem

Full Text:

PDF

References


Bisht, Dinesh C.S. dan Pankaj Kumar Srivastava. (2019). One Point Conventional Model to Optimize Trapezoidal Fuzzy Transportation Problems. Noida: institut teknologi informasi jaypee, 4(5), 1251- 1263.

Risnawati, Dewi Sukmaratri. (2020). Solving The Fuzzy Transportation Problems Is Balanced With Modified Vogel’s Approximation Method. semarang: departemen matematika, universitas diponegoro.

Wulandari S. (2020, Oktober 26). Metode Modified Distribution (MODI). YouTube. https://www.youtube.com/watch?si=bZmyw2u5oFUENWDo

Wirawan, Agung Budi dan Karyati. (2021). Solving Fuzzy Transportation Problems Using Monalisha’s Approximation Method For Water Distribution In Regional Drinking Water Company Of Tirtamarta. Yogyakarta: J Sains Dasar. 10 (2) 36 - 43.

Astuti, Nita Dwi, Robertus Heri S.U, dan Suryoto. (2016). Solusi Masalah Transportasi Menggunakan Tocm-Sum Approach Dengan Indikator Distribusi. Semarang: Jurnal matematika Universitas Diponegoro. 19(3) 121 - 126.

Hillier, F. S., & Lieberman, G. J. (2020). Introduction to Operations Research (10th ed.). McGraw-Hill Education

Ni Ketut Taris Tastrawati (2015). Pemrograman Linier:Model Transportasi. Bukit Jimbaran : Jurusan matematika, universitas udayana.

Aminudin. (2005). Prinsip - prinsip riset operasi. Jakarta : Erlangga

Sari, D. P., Bu’Ulolo, F., & Ariswoyo, S. (2013). Optimasi masalah transportasi dengan menggunakan metode potensial pada sistem distribusi PT. XYZ. Saintia Matematika, 1(5), 406-418

Syahdan, S., & Arianti, S. (2023). Perbandingan Metode Least Cost dan Vogel’s Approximation (VAM) dalam Optimasi Masalah Transportasi UD. Sari Bumi Raya. Jurnal Sains Benuanta, 2(2), 17- 25.

S.W. Raharjo, and E.R. Wulan, “Penggunaan Metode Maximum Supply With Minimum Cost untuk Mendapatkan Solusi Layak Awal Masalah Transportasi,” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 2, no. 2, p.11, 2017, doi: 10.15575/kubik.v2i2.1855.

Y.N, Dili, E.R. Wulan, F. Ilahi, “Penyelesaian Masalah Transportasi untuk Mencari Solusi Optimal dengan Pendekatan Minimum Spanning Tree (MST) Menggunakan Algoritma Kruskal dan Algoritma Prim,” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 6, no. 1, p.44, 2021, doi: 10.15575/kubik.v6i1.13907.

Q. U. Safitri, A. F. Huda, dan A. S. Awaludin, “Segmentasi Citra Menggunakan Algoritma Fuzzy C-Means (FCM) dan Spatial Fuzzy C-Means (sFCM),” KUBIK J. Publ. Ilm. Mat., vol. 2, no. 1, hal. 22–34, 2017, doi: 10.15575/kubik.v2i1.1471.

Hartono, D., & Suryani, T. (2021). Metode PMZ untuk Penyelesaian Masalah Transportasi Fuzzy. AIP Conference Proceedings, 1848(1), 040007. Retrieved from https://pubs.aip.org/aip/acp/article/1848/1/040007/760200

Susanti, E., & Sari, D. (2017). Pendekatan Algoritma Baru untuk Masalah Transportasi Fuzzy. Jurnal Teknologi Informasi dan Komunikasi, 15(3), 201-215. doi:10.5120/14237-1165




DOI: https://doi.org/10.15575/kubik.v9i1.35949

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 A Mujtaba, Ai Munirotusy Syariah, Ain Fitriyani Patimah, Elis Ratna Wulan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.