Klusterisasi Penyandang Masalah Kesejahteraan Sosial (PMKS) Di Kabupaten Bojonegoro Menggunakan Algoritma K-Medoids
DOI:
https://doi.org/10.15575/kubik.v7i2.21653Keywords:
Clustering, K-Medoids, PMKS, Silhouette CoefficientAbstract
Persons with Social Welfare Problems (PMKS) are individuals, community groups, or families who cannot adequately and properly meet their economic, physical, mental, and social needs, both spiritually and physically, because of an obstacle, difficulty, or disturbance. This study aimed to classify sub-districts in Bojonegoro Regency based on the level of social welfare problems using the K-Medoids Clustering (PAM) Analysis method. There are 2 clusters formed with an Average Silhouette of 0.73. Cluster 1 is a sub-district group with common social welfare problems, and Cluster 2 is a sub-district group with high social welfare problems. Each silhouette value of the cluster is 0.74 and 0.70 with the specifications of a well-formed and strong structure.
References
U. IZZATY, I. RAHMI HG, and D. DEVIANTO, “Pengklasteran Kabupaten/Kota Di Provinsi Sumatera Barat Berdasarkan Indikator Kesejahteraan Masyarakat Dengan Validitas Koefisien Silhouette,†J. Mat. UNAND, vol. 9, no. 2, p. 192, 2020, doi: 10.25077/jmu.9.2.192-198.2020.
A. Hafiludien and D. Istiawan, “Penerapan Algoritma Self Organizing Maps Untuk Pemetaan Penyandang Kesejahteraan Sosial (PMKS) di Provinsi Jawa Tengah Tahun 2016,†7th Univ. Res. Colloqium, pp. 84–92, 2018.
Dispendukcapil Bojonegoro, “Data Penduduk,†2021. https://data.bojonegorokab.go.id/dinas-kependudukan-dan-catatan-sipil.html
B. M. Metisen and H. L. Sari, “Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila,†J. Media Infotama, vol. 11, no. 2, pp. 110–118, 2015.
A. Y. Rofiqi, “Clustering Berita Olahraga Berbahasa Indonesia Menggunakan Metode K-Medoid Bersyarat,†J. Simantec, vol. 6, no. 1, pp. 25–32, 2017.
G. Dwilestari, Mulyawan, Martanto, and I. Ali, “Analisis Clustering menggunakan K-Medoid pada Data Penduduk Miskin Indonesia,†JURSIMA J. Sist. Inf. dan Manaj., vol. 9, no. 3, pp. 282–290, 2021.
S. Nurlaela, A. Primajaya, and T. N. Padilah, “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,†I N F O R M a T I K a, vol. 12, no. 2, p. 56, 2020, doi: 10.36723/juri.v12i2.234.
S. Asmiatun, “Penerapan Metode K-Medoids Untuk Pengelompokkan Kondisi Jalan Di Kota Semarang,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 171–180, 2019, doi: 10.35957/jatisi.v6i2.193.
A. D. Andini and T. Arifin, “Implementasi Algoritma K-Medoids Untuk Klasterisasi Data Penyakit Pasien Di Rsud Kota Bandung,†J. Responsif Ris. Sains dan Inform., vol. 2, no. 2, pp. 128–138, 2020, doi: 10.51977/jti.v2i2.247.
D. Marlina, N. F. Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,†J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.
R. Silvi, “Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia,†J. Mat. “MANTIK,†vol. 4, no. 1, pp. 22–31, 2018, doi: 10.15642/mantik.2018.4.1.22-31.
D. F. Pramesti, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.
B. Wira, A. E. Budianto, and A. S. Wiguna, “Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi Mahasiwa Baru Tahun 2018 Di Universitas Kanjuruhan Malang,†RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 3, pp. 53–68, 2019, doi: 10.21067/jtst.v1i3.3046.
F. Alfiah, Almadayani, D. Al Farizi, and E. Widodo, “Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan di Jawa Timur Tahun 2020,†J. Ilm. Sains, vol. 22, no. 1, p. 1, 2021, doi: 10.35799/jis.v22i1.35911.
F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Diare Di Indonesia,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 598–603, 2019, doi: 10.30865/komik.v3i1.1666.
R. Handoyo, R. R. M, and S. M. Nasution, “Perbandingan Metode Clustering menggunakan metode Single Linkage dan K-Means pada Pengelompokan Dokumen,†JSM STMIK Mikroskil, vol. Vol. 15, pp. 1–10, 2016.
R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,†Techno.Com, vol. 20, no. 2, pp. 186–197, 2021, doi: 10.33633/tc.v20i2.4556.
M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX,†vol. 8, pp. 161–170, 2019.
“Peta Sebaran Kantong Kemiskinan di Bojonegoro,†2021. https://prc-initiative.org/berita/peta-sebaran-kantong-kantong-kemiskinan-di-bojonegoro
Asisten Staf Khusus Presiden, “Membangun Indonesia Dari Pinggiran Desa,†2019. https://setkab.go.id/membangun-indonesia-dari-pinggiran-desa/
Downloads
Published
Issue
Section
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â