Implementation of BiLSTM to Predict World Crude Oil Prices

Authors

  • Firda Yunita Sari
  • Nurissaidah Ulinnuha UIN Sunan Ampel Surabaya

Keywords:

BiLSTM, MAPE, Parameters, Prediction, World Crude Oil Prices

Abstract

The main source of energy worldwide is crude oil, which is used by almost all countries as an energy source. Crude oil plays a key role in driving the global economy, especially in the industrial and transportation sectors. Along with technological developments, crude oil price predictions can be made more sophisticated using artificial intelligence-based methods, one of which is the Bidirectional Long Short-Term Memory (BiLSTM) method which is a development of the Long Short-Term Memory (LSTM) method by combining past and future information when processing sequential data, BiLSTM uses forward and backward LSTM simultaneously to increase accuracy. The study used world crude oil price data for 1 year. There are 57 tests with several parameters such as data division, number of neurons, batch size, and activation function. After testing with the BiLSTM method for 57 scenarios, there is the smallest MAPE value of 0.09% at a data division of 90:10, number of neurons 100, batch size of value 4, and ReLu activation function. The resulting prediction model is highly accurate based on the MAPE criterion value.

References

V. G. Yadav, G. D. Yadav, and S. C. Patankar, “The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à -vis sustainability and the environment,†Clean Technol. Environ. Policy, vol. 22, no. 9, pp. 1757–1774, 2020, doi: 10.1007/s10098-020-01945-5.

C. W. Su, S. W. Huang, M. Qin, and M. Umar, “Does crude oil price stimulate economic policy uncertainty in BRICS?,†Pacific Basin Financ. J., vol. 66, no. September 2020, p. 101519, 2021, doi: 10.1016/j.pacfin.2021.101519.

Z. Jia, S. Wen, and B. Lin, “The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China,†Appl. Energy, vol. 302, no. August, p. 117612, 2021, doi: 10.1016/j.apenergy.2021.117612.

S. Karasu, A. Altan, S. Bekiros, and W. Ahmad, “A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series,†Energy, vol. 212, p. 118750, 2020, doi: 10.1016/j.energy.2020.118750.

A. Pourdaryaei et al., “Recent development in electricity price forecasting based on computational intelligence techniques in deregulated power market,†Energies, vol. 14, no. 19, pp. 1–28, 2021, doi: 10.3390/en14196104.

J. Wu, Z. Wang, Y. Hu, S. Tao, and J. Dong, “Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory,†Water Resour. Manag., vol. 37, no. 2, pp. 937–953, 2023, doi: 10.1007/s11269-022-03414-8.

Z. Hameed and B. Garcia-Zapirain, “Sentiment Classification Using a Single-Layered BiLSTM Model,†IEEE Access, vol. 8, pp. 73992–74001, 2020, doi: 10.1109/ACCESS.2020.2988550.

M. Yang and J. Wang, “Adaptability of Financial Time Series Prediction Based on BiLSTM,†Procedia Comput. Sci., vol. 199, pp. 18–25, 2021, doi: 10.1016/j.procs.2022.01.003.

D. Apriadi and A. Y. Saputra, “Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik Nurdi,†Resti, vol. 1, no. 1, pp. 19–25, 2022.

D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,†Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023, doi: 10.34312/euler.v11i1.19791.

A. Puspita Sari, E. A. Hakim, D. Arman Prasetya, R. Arifuddin, and P. Dani, “Sistem Prediksi Kecepatan Dan Arah Angin Menggunakan Bidirectional Long Short-Term Memory,†Semin. Keinsinyuran Progr. Stud. Progr. Profesi Ins., vol. 1, no. 1, pp. 6–16, 2021, doi: 10.22219/skpsppi.v1i0.4196.

G. Darmawan, N. Gusriani, R. Ruslan, F. Agustiana, and R. A. Saputra, “Perbandingan Model Bidirectional-LSTM dan Singular Spectrum Analysis dalam Peramalan Harga Cabai,†Innov. J. Soc. Sci. Res., vol. 3, no. 2, pp. 1504–1514, 2023.

F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,†Chaos, Solitons and Fractals, vol. 140, p. 110212, 2020, doi: 10.1016/j.chaos.2020.110212.

Investing, “crude-oil-historical-data @ www.investing.com,†investing.com, 2023. https://www.investing.com/commodities/crude-oil-historical-data

S. K. S. Sivamohan, S.S. Sridhar, “An Effective Recurrent Neural Network (RNN) based Intrusion Detection via Bi-directional Long Short-Term Memory,†IEEE Access, 2021, [Online]. Available: https://doi.org/10.1109/CONIT51480.2021.9498552

Q. T. Bui, Q. H. Nguyen, X. L. Nguyen, V. D. Pham, H. D. Nguyen, and V. M. Pham, “Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping,†J. Hydrol., vol. 581, p. 12479, 2020, doi: 10.1016/j.jhydrol.2019.124379.

A. H. Elsheikh et al., “Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia,†Process Saf. Environ. Prot., vol. 149, pp. 223–233, 2021, doi: 10.1016/j.psep.2020.10.048.

C. Magazzino, M. Mele, and N. Schneider, “A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions,†Renew. Energy, vol. 167, pp. 99–115, 2021, doi: 10.1016/j.renene.2020.11.050.

H. F. Fadli and A. F. Hidayatullah, “Identifikasi Cyberbullying Pada Media Sosial Twitter Menggunakan Metode Klasifikasi Random Forest,†Automata, 2019.

P. Singla, M. Duhan, and S. Saroha, “An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network,†Earth Sci. Informatics, vol. 15, no. 1, pp. 291–306, 2022, doi: 10.1007/s12145-021-00723-1.

D. Kent and F. Salem, “Performance of Three Slim Variants of the Long Short-Term Memory (LSTM) Layer,†Midwest Symp. Circuits Syst., vol. August, no. 7, pp. 307–310, 2019, doi: 10.1109/MWSCAS.2019.8885035.

M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A CNN-BiLSTM Model for Document-Level Sentiment Analysis,†Mach. Learn. Knowl. Extr., vol. 1, no. 3, pp. 832–847, 2019, doi: 10.3390/make1030048.

M. Piekutowska et al., “The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest,†Agronomy, vol. 11, no. 5, 2021, doi: 10.3390/agronomy11050885.

R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization,†Renew. Sustain. Energy Rev., vol. 124, no. June 2019, p. 109792, 2020, doi: 10.1016/j.rser.2020.109792.

Downloads

Published

2025-05-30

How to Cite

Sari, F. Y., & Ulinnuha, N. (2025). Implementation of BiLSTM to Predict World Crude Oil Prices. KUBIK: Jurnal Publikasi Ilmiah Matematika, 10(1), 34–47. Retrieved from https://journal.uinsgd.ac.id/index.php/kubik/article/view/40385

Issue

Section

Articles

Citation Check

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.