Analisis Dinamik Pada Model Penyebaran Penyakit Campak dengan Pengaruh Vaksin Permanen
Abstract
Penyakit campak merupakan penyakit menular yang disebabkan oleh virus golongan Paramixovirus. Kasus campak di Indonesia sering terjadi meskipun telah berhasil direduksi dari angka kejadian 180.000 kasus pada tahun 1990 menjadi sekitar 20.000 kasus pada tahun 2010. Pemberian vaksin campak kepada balita dan anak usia sekolah dasar merupakan salah satu program pemerintah dalam mencegah dan menanggulangi kenaikan angka kejadian penyakit campak. Pada paper ini dikembangkan model matematika untuk penyebaran penyakit campak. Model merupakan sistem dinamik non linear empat dimensi yang menggambarkan pengaruh vaksin permanen terhadap penyebaran penyakit campak. Metode Routh Hurwith digunakan untuk menganalisis kestabilan dari titik ekulibrium endemik. Kita menggunakan basic roproduction number untuk menganlisis keendemikan penyakit yang diperoleh dengan metode next generation matrix. Hasil Analisis dan Simulasi numerik memberikan informasi bahwa laju vaksinasi permanen berpengaruh sangat significant terhadap penurunan populasi manusia yang terinveksi penyakit campak.
Keywords
Article metrics
Abstract views : 196 | PDF views : 126Full Text:
PDFReferences
D. Didik Budijanto, B. Hardhana, M. Yudianto, and Dkk, “Propil Kesehatan Indonesia 2016,” 2017.
Depkes RI, “Kementerian kesehatan republik indonesia,” 2016.
Y. Zhou, W. Zhang, S. Yuan, and H. Hu, “Persistence and extinction in stochastic sirs models with
general nonlinear incidence rate,” Electron. J. Differ. Equations, vol. 2014, 2014.
X. Wang, Y. Tao, and X. Song, “Analysis of pulse vaccination strategy in SIRVS epidemic model,”
Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 6, pp. 2747–2756, 2009.
J. M. Heffernan and M. J. Keeling, “An in-host model of acute infection: Measles as a case study,”
Theor. Popul. Biol., vol. 73, no. 1, pp. 134–147, 2008.
G. Zaman, Y. Han Kang, and I. H. Jung, “Stability analysis and optimal vaccination of an SIR
epidemic model,” BioSystems, vol. 93, no. 3, pp. 240–249, 2008.
G. Zaman, Y. H. Kang, G. Cho, and I. H. Jung, “Optimal strategy of vaccination & treatment in an
SIR epidemic model,” Math. Comput. Simul., vol. 136, pp. 63–77, 2017.
T. K. Kar and A. Batabyal, “Stability analysis and optimal control of an SIR epidemic model with
vaccination,” BioSystems, vol. 104, no. 2–3, pp. 127–135, 2011.
A. A. Lashari, “Optimal control of an SIR epidemic model with a saturated treatment,” Appl. Math.
Inf. Sci., vol. 10, no. 1, pp. 185–191, 2016.
H. Laarabi, A. Abta, M. Rachik, J. Bouyaghroumni, and E. H. Labriji, “Stability Analysis and Optimal
Vaccination Strategies for an SIR Epidemic Model with a Nonlinear Incidence Rate,” ISSN Int. J.
Nonlinear Sci., vol. 16, no. 4, pp. 1749–3889, 2013.
Jurnal Kubik, Volume 2 No. 2 ISSN : 2338-0896
Y. Zhao and D. Jiang, “The threshold of a stochastic SIRS epidemic model with saturated
incidence,” Appl. Math. Lett., vol. 34, no. 1, pp. 90–93, 2014.
Y. Cai, X. Wang, W. Wang, and M. Zhao, “Stochastic dynamics of an SIRS epidemic model with
ratio-dependent incidence rate,” Abstr. Appl. Anal., vol. 2013, 2013.
Q. Liu and Q. Chen, “Analysis of the deterministic and stochastic SIRS epidemic models with
nonlinear incidence,” Phys. A Stat. Mech. its Appl., vol. 428, pp. 140–153, 2015.
O. Diekmann, J. a P. Heesterbeek, and M. G. Roberts, “The construction of next-generation
matrices for compartmental epidemic models.,” J. R. Soc. Interface, vol. 7, no. 47, pp. 873–885,
J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis
and Interpretation, vol. 26 Suppl 4. 2000.
P. Van Den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission,” Math. Biosci., vol. 180, pp. 29–48,
J. J. Anagnost and C. A. Desoer, “An elementary proof of the Routh-Hurwitz stability criterion,”
Circuits Syst. Signal Process., vol. 10, no. 1, pp. 101–114, 1991.
X. Yang, “Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order,” Appl.
Math. Lett., vol. 15, no. 5, pp. 615–621, 2002.
Refbacks
- There are currently no refbacks.
Comments on this article
by Marlin Wright (2017-12-15)
by STELLA BAN (2018-01-02)
by Elli Noah (2018-01-02)
by Henry Carter (2018-01-11)
by edwar maclean (2018-01-11)
by Brett Smith (2018-01-24)
by Jam Martin (2018-02-01)
by Nina Willaims (2018-02-01)
by Abe Baxter (2018-02-01)
by Cerys Perry (2018-02-03)
by sophia james (2018-02-06)
by flawless angle (2018-02-06)
by jonny blaze (2018-02-06)
by Nathan Drake (2018-02-07)
by sofia watson (2018-02-13)
by sofia watson (2018-02-13)
by Marianna Lewis (2018-02-13)
by Amanda Leon (2018-02-13)
by Michael David (2018-02-23)
by james jhon (2018-02-23)
by Write Mypaperguru (2018-02-23)
by silver lombard (2018-02-26)
by Do MyAssignment (2018-03-01)
by madhu naidu (2018-03-20)
by Essay Sutra (2018-03-27)
by Henry Carter (2018-03-31)
by Harlan Barren (2018-04-02)
by Madhu Ganadi (2018-04-02)
by Madhu Ganadi (2018-04-02)
by Madhu Ganadi (2018-04-02)
by Henry Carter (2018-04-06)
by Henry Carter (2018-04-16)
by Michael Fox (2018-04-18)
by Henry Carter (2018-04-23)
by William Riley (2018-04-24)