A Turn-off Fluorescent Chemosensor for Detecting Formaldehyde Based on Pyridine Derivative

A Turn-off Fluorescent Chemosensor for Detecting Formaldehyde Based on Pyridine Derivative

Authors

  • Nurul Hidayah Department of Food Technology, Universitas Ahmad Dahlan
  • Bambang Purwono Department of Chemistry, Universitas Gadjah Mada

DOI:

https://doi.org/10.15575/ak.v10i2.25573

Keywords:

Pyridine, Formaldehyde, Fluorescence, Turn-off, Formalin

Abstract

Formaldehyde in solution, commonly known as formalin, is often utilized. In Indonesia, there is widespread misuse of formalin as a food preservative. Formaldehyde has been identified as a carcinogenic substance by the International Agency for Research on Cancer (IARC) and the Environmental Protection Agency (EPA). Based on this background, the present study developed a sensor compound capable of detecting formaldehyde obviously. The compound 3'-(4-(3,4-dimethoxyphenyl)pyridine-2,6-diyl)dianiline (ChP-2A) has been successfully synthesized through the reduction reaction of the compound 4-(3,4-dimethoxyphenyl)-2,6-bis(3-nitrophenyl)pyridine (ChP-0A) using 80% hydrazine hydrate and 10% Pd/C as a catalyst. The ChP-2A compound in acetonitrile exhibits a significant decrease in fluorescence intensity (turn-off) after the addition of formaldehyde, and it has been successfully applied in the form of a test paper for the detection of formaldehyde qualitatively

Author Biography

Nurul Hidayah, Department of Food Technology, Universitas Ahmad Dahlan

Food Technology Department

References

H. Checkoway, “Environmental and occupational exposures in kidney diseaseâ€, Encycl. Cancer, 1, 569–573, 2019, doi: 10.1016/j.semnephrol.2019.02.001.

V.J. Cogliano, Y. Grosse, R.A. Baan, K. Straif, M.B. Secretan, and F. El Ghissassi, “Meeting report : summary of iarc monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanolâ€, Environ. Health Perspect., 113(9), 1205–1208, 2005, doi: 10.1289/ehp.7542.

B. Wang and E.V. Anslyn, Chemosensors: Prenciples, Strategies, and Applications. 2011.

M.H. Fischer, “The toxic effects of formaldehyde and formalinâ€, J. Exp. Med., 6, 487–518, 1905, doi: 10.1016/0029-5582(60)90147-4.

Y.I. Korpan, M.V. Gonchar, N.F. Starodub, A.A. Shulga, A.A. Sibirny, and A.V. Elskaya, “A cell biosensor specific for formaldehyde based on ph-sensitive transistors coupled to methylotrophic yeast cells with genetically adjusted metabolismâ€, Anal. Biochem., 215(2), 216–222, Dec. 1993, doi: 10.1006/ABIO.1993.1578.

J. Li, J. Zhu, and L. Ye, “Determination of formaldehyde in squid by high-performance liquid chromatographyâ€, Asia Pac J Clin Nutr, 16(Suppl 1), 127–130, 2007.

O. Nikitina et al., “Bi-enzyme biosensor based on NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay,†Sensors Actuators, B Chem., 125(1), 1–9, 2007, doi: 10.1016/j.snb.2007.01.025.

T.S. Yeh, T.C. Lin, C.C. Chen, and H.M. Wen, “Analysis of free and bound formaldehyde in squid and squid products by gas chromatography-mass spectrometryâ€, J. Food Drug Anal., 21(2), 190–197, 2013, doi: 10.1016/j.jfda.2013.05.010.

A. Dar, U. Shafique, and J. Anwar, “A simple spot test quantification method to determine formaldehyde in aqueous samplesâ€, J. Saudi Chem. Soc., 20, S352–S356, 2013, doi: 10.1016/j.jscs.2012.12.002.

G.J. Mohr, “New chromoreactands for the detection of aldehydes, amines and alcoholsâ€, Sensors Actuators B. Chem., 90, 31–36, 2003, doi: 10.1016/S0925-4005(03)00018-2.

K. Wei, L. Ma, G. Ma, C. Ji, and M. Yin, “Dyes and pigments a two-step responsive colorimetric probe for fast detection of formaldehyde in weakly acidic environmentâ€, 165(February), 294–300, 2019, doi: 10.1016/j.dyepig.2019.02.026.

A. Shivakumar, “Colorimetric analytical probe for determination of formaldehyde and its validation using a single reagentâ€, Biochem. Anal. Biochem., 9, 1–4, 2020, doi: 10.35248/2161-1009.19.8.389.

C. Liao et al., “Paper-based vapor detection of formaldehyde: Colorimetric sensing with high sensitivityâ€, Chemosensors, 9(12), 1–11, 2021, doi: 10.3390/chemosensors9120335.

Y. Thepchuay, W. Chairit, N. Saengsane, P. Porrawatkul, and R. Pimsen, “Simple and green colorimetric method for the detection of formaldehyde in vegetable samplesâ€, J. Food Compos. Anal., 111, 104623, 2022, doi: https://doi.org/10.1016/j.jfca.2022.104623.

W. Wongsakoonkan, S. Pengpumkiat, V. Boonyayothin, C. Tangtong, W. Laohaudomchok, and W. Phanprasit, “Colorimetric pad for low-concentration formaldehyde monitoring in indoor airâ€, J. Heal. Res., 36(4), 781–790, 2022, doi: 10.1108/JHR-09-2020-0428.

P. Siribunbandal, S. Pudwat, T. Osotchan, and R. Jaisutti, “Colorimetric sensor for formaldehyde detection using thiol-functionalized polydiacetylene and zinc oxide nanocomposites,†J. Phys. Conf. Ser., 2431(1), 2023, doi: 10.1088/1742-6596/2431/1/012010.

H. Song et al., “A tailor-designed fluorescent ‘turn-on’ sensor of formaldehyde based on the BODIPY motif,†Tetrahedron Lett., 53(37), 4913–4916, Sep. 2012, doi: 10.1016/j.tetlet.2012.06.117.

C. Liu et al., “Nanomolar fluorescent quantitative detection of formaldehyde with an 8-hydroxyquinoline derivative in aqueous solution and electrospun nanofibers,†Sensors Actuators, B Chem., 219, 185–191, 2015, doi: 10.1016/j.snb.2015.04.131.

X. Lu et al., “Fluorescence Sensing of Formaldehyde and Acetaldehyde Based on Responsive Inverse Opal Photonic Crystals: A Multiple-Application Detection Platform,†ACS Appl. Mater. Interfaces, 13(11), 13792–13801, 2021, doi: 10.1021/acsami.0c22105.

J.-J. Zheng, W.-C. Liu, F.-N. Lu, Y. Tang, and Z.-Q. Yuan, “Recent progress in fluorescent formaldehyde detection using small molecule probesâ€, J. Anal. Test., 6(2), 204–215, 2022, doi: 10.1007/s41664-022-00220-4.

H. Du et al., “A novel fluorescent probe for the detection of formaldehyde in real food samples, animal serum samples and gaseous formaldehydeâ€, Food Chem., 411, 135483, 2023, doi: https://doi.org/10.1016/j.foodchem.2023.135483.

C. Liao et al., “Selective turn-on fluorescence detection of formaldehyde in the gas phaseâ€, Sensors Actuators B Chem., 375, 132861, 2023, doi: https://doi.org/10.1016/j.snb.2022.132861.

A. Roth, H. Li, and C. Anorma, “A reaction-based fluorescent probe for imaging of formaldehyde in living cellsâ€, J. Am. Chem.Soc., 37, 10890–10893, 2015, doi: 10.1021/jacs.5b05339.

B. Dong, X. Song, Y. Tang, and W. Lin, “A rapid and facile fluorimetric method for detecting formaldehydeâ€, Sensors Actuators, B Chem., 222, 325–330, 2016, doi: 10.1016/j.snb.2015.07.039.

L. He, X. Yang, M. Ren, X. Kong, Y. Liu, and W. Lin, “An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoorsâ€, Chem. Commun., 52(61), pp. 9582–9585, 2016, doi: 10.1039/C6CC04254F.

J. Xu, Y. Zhang, L. Zeng, J. Liu, J. M. Kinsella, and R. Sheng, “Talanta A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reactionâ€, Talanta, 160, 645–652, 2016, doi: 10.1016/j.talanta.2016.08.010.

D. Ovianto, I.B.A.R. Sugiharta, and B. Purwono, “Synthesis of 4-Phenyl-2, 6-Bis ( 4-Aminophenyl ) pyridine compound and study of their fluorescence behaviour for formaldehyde sensingâ€, Chemtech, 10(9), 918–923, 2017.

Y. Wu, Z. Zheng, J. Wen, H. Li, S. Sun, and Y. Xu, “Imaging of formaldehyde in live cells and plants utilizing small molecular probes with large stokes shiftsâ€, Sensors Actuators, B Chem., 260, 937–944, 2018, doi: 10.1016/j.snb.2018.01.128.

D. Zhang et al., “A simple pyrene-based fluorescent probe for highly selective detection of formaldehyde and its application in live-cell imagingâ€, Anal. Chim. Acta, 1033, 180–184, 2018, doi: 10.1016/j.aca.2018.05.065.

N. Hidayah, B. Purwono, B. A. Nurohmah, and H.D. Pranowo, “Synthesis of pyridine derivative-based chemosensor for formaldehyde detectionâ€, Indones. J. Chem., 19(4), 1074–1080, 2019, doi: 10.22146/ijc.44028.

A. Bi, S. Yang, M. Liu, X. Wang, W. Liao, and W. Zeng, “Fluorescent probes and materials for detecting formaldehyde: From laboratory to indoor for environmental and health monitoringâ€, RSC Adv., 7(58), pp. 36421–36432, 2017, doi: 10.1039/c7ra05651f.

A. Bi et al., “A novel naphthalimide-based probe for ultrafast, highly selective and sensitive detection of formaldehydeâ€, Sensors Actuators, B Chem., 255, 3292–3297, 2018, doi: 10.1016/j.snb.2017.09.156.

Y. Zhou, J. Yan, N. Zhang, D. Li, S. Xiao, and K. Zheng, “A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reactionâ€, Sensors Actuators, B Chem., 258, 156–162, 2018, doi: 10.1016/j.snb.2017.11.043.

W. Zhou, H. Dong, H. Yan, C. Shi, and M. Yu, “Sensors and Actuators B : Chemical HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100 % water solutionâ€, Sensors Actuators B. Chem., 209, 664–669, 2015, doi: 10.1016/j.snb.2014.12.043.

N. Hidayah, B. Purwono, and H. D. Pranowo, “Symmetrical azine colorimetric and fluorometric turn-off chemosensor for formaldehyde detectionâ€, Sains Malaysiana, 48(10), pp. 2161–2167, 2019.

Q. Li, P. Sritharathikhun, and S. Motomizu, “Development of novel reagent for Hantzsch reaction for the determination of formaldehyde by spectrophotometry and fluorometryâ€, Anal. Sci., 23(4), 413–7, 2007, doi: 10.2116/analsci.23.413.

M.N. Indang, A.S. Abdulamir, A. Abu Bakar, A.B. Salleh, Y.H. Lee, and Y. Nor Azah, “A review: Methods of determination of health-endangering formaldehyde in dietâ€, Research Journal of Pharmacology, 3(2), 31–47, 2009.

Y. Chen et al., “A new highly selective fluorescent turn-on chemosensor for cyanide anionâ€, Talanta, 137, 38–42, 2015, doi: 10.1016/j.talanta.2015.01.018.

B. Tamami and H. Yeganeh, “Synthesis and characterization of novel aromatic polyamides derived from 4-aryl-2,6-bis(4-aminophenyl) pyridinesâ€, Polymer (Guildf)., 42(2), 415–420, 2001, doi: 10.1016/S0032-3861(00)00276-7.

J.P. Lewicki, C.A. Fox, and M.A. Worsley, “On the synthesis and structure of resorcinol-formaldehyde polymeric networks - Precursors to 3D-carbon macroassembliesâ€, Polymer (Guildf)., 69(1), 45–51, 2015, doi: 10.1016/j.polymer.2015.05.016.

Downloads

Published

2023-12-31
Loading...