Analisis pembelajaran persamaan diferensial berdasarkan artikel-artikel penelitian


Eliva Sukma Cipta(1*), Jarnawi Afgani Dahlan(2)

(1) ,  
(2) Program Studi Pendidikan Matematika, Universitas Pendidikan Indonesia,  
(*) Corresponding Author

Abstract


Artikel ini mengkaji beberapa penelitian sebelumnya tentang pembelajaran persamaan diferensial biasa untuk mendeteksi masalah yang sering muncul dalam mata kuliah persamaan diferensial biasa dan melihat metode-metode yang digunakan untuk mengatasi masalah yang terjadi, serta mengkaji beberapa artikel teori APOS yang merupakan teori yang mempelajari bagaimana mahasiswa membangun konsep matematika. Metode yang digunakan dalam penelitian ini adalah studi literatur artikel-artikel penelitian. Artikel yang dikaji sebagai sumber studi dipilih secara acak dengan ketentuan topik pembelajaran persamaan diferensial dan teori APOS. Artikel yang terpilih dianalisis secara deskriptif. Hasil kajian menunjukkan bahwa masalah yang sering muncul dalam pembelajaran persamaan diferensial adalah kesalahan konseptual sehingga model-model yang dipilih secara umum adalah model-model pembelajaran yang menekankan pada penguatan konsep. Salah satu model pembelajaran yang mendukung untuk menanamkan konsep matematika adalah model pembelajaran berdasarkan teori APOS.

 

This article examines some of the previous research on learning ordinary differential equations to detect problems that often arise in ordinary differential equations courses and looks at the methods used to solve problems that occur, and examines several articles on APOS theory, which are theories that study how students build mathematical concepts. The method used in this research is literature study of research articles. The articles studied as study sources were randomly selected with the provisions of the topic of learning differential equations and APOS theory. The selected articles were analyzed descriptively. The results of the study show that the problem that often arises in learning differential equations is conceptual errors so that the models chosen in general are learning models that emphasize concept reinforcement. One of the learning models that support embedding mathematical concepts is a learning model based on the APOS theory.


Keywords


studi literatur, persamaan diferensial, APOS

References


Aisha, B., Zamri, S., Abedalaziz, N., & Ahmad, M. (2017). Teaching and Learning of Differential Equation: A Critical Review to Explore Potential Area for Reform Movement. International Journal for Innovative Research in Multidisciplinary Field, 3(6), 225–235.

Arnawa, I. M., Sumarno, U., Kartasasmita, B., & Baskoro, E. T. (2007). Applying the Apos Theory To Improve Students Ability To Prove in Elementary Abstract Algebra. Journal of the Indonesian Mathematical Society, 13(1), 133–148. https://doi.org/10.22342/jims.13.1.80.133-148

Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29(2), 94–107. https://doi.org/10.1093/teamat/hrq001

Azman, A., & Ismail, Z. (2017). Learning Differential Equations: a Metasynthesis of Qualitative Research. Ijer - Indonesian Journal of Educational Review, 1(1), 55. https://doi.org/10.21009/ijer:01.01.06

Baye, M. G., Ayele, M. A., & Wondimuneh, T. E. (2021). Implementing GeoGebra integrated with multi-teaching approaches guided by the APOS theory to enhance students’ conceptual understanding of limit in Ethiopian Universities. Heliyon, 7(5), e07012. https://doi.org/10.1016/j.heliyon.2021.e07012

Bego, C. R., Ralston, P. A., Thompson, A., Parsons, A., & Crush, G. J. (2018). Flipping the differential equations classroom: Changes over time. ASEE Annual Conference and Exposition, Conference Proceedings, 2018-June. https://doi.org/10.18260/1-2--30528

Brandi, A. C., & Garcia, R. E. (2017). Motivating engineering students to math classes: Practical experience teaching ordinary differential equations. Proceedings - Frontiers in Education Conference, FIE, 2017-Octob, 1–7. https://doi.org/10.1109/FIE.2017.8190489

Dubinsky, E. (2001). Using a Theory of Learning in College Mathematics Courses. MSOR Connections, 1(2), 10–15. https://doi.org/10.11120/msor.2001.01020010

Hartati, S. J. (2014). Design of Learning Model of Logic and Algorithms Based on APOS Theory. International Journal of Evaluation and Research in Education (IJERE), 3(2), 109–118. https://doi.org/10.11591/ijere.v3i2.5743

Horst, E. (2005). Examining Differences in Student Achievements in Differential Equations. McNair Scholars Online Journal, 1(1), 165–179. https://doi.org/10.15760/mcnair.2005.165

Khotimah, R. P., & Masduki, M. (2016). Improving Teaching Quality and Problem Solving Ability Through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 1(1), 1–13. https://doi.org/10.23917/jramathedu.v1i1.1791

Ningsih, Y. L., & Rohana, R. (2018). Pemahaman Mahasiswa Terhadap Persamaan Diferensial Biasa Berdasarkan Teori Apos. Jurnal Penelitian Dan Pembelajaran Matematika, 11(1). https://doi.org/10.30870/jppm.v11i1.2995

Nurlaelah, E., & Sumarmo, U. (2009). Implementasi Model Pembelajaran APOS dan Modifikasi-APOS (M-APOS) Pada Mata Kuliah Struktur Aljabar. 2–15.

Oh, W., & Kwon, N. (2002). Conceptualizing the Realistic Mathematics Education Approach in The Teaching and Learning of Ordinary Differential Equations. Proceedings of the 2nd International Conference on the of Nathematics (at Undergraduated Level), 1–11.

Padir, T., Muller, K. O., & Coullard, C. (2008). Teaching differential equations in a diverse classroom. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--3922

Paraskakis, I. (2003). Rethinking the teaching of differential equations through the constructivism paradigm. Proceedings - 3rd IEEE International Conference on Advanced Learning Technologies, ICALT 2003, 506–510. https://doi.org/10.1109/ICALT.2003.1215219

Syamsuri, S., Purwanto, P., Subanji, S., & Irawati, S. (2017). Using APOS Theory Framework: Why Did Students Unable To Construct a Formal Proof? International Journal on Emerging Mathematics Education, 1(2), 135. https://doi.org/10.12928/ijeme.v1i2.5659

Vajravelu, K. (2018). Innovative Strategies for Learning and Teaching of Large Differential Equations Classes. International Electronic Journal of Mathematics Education, 13(2), 91–95. https://doi.org/10.12973/iejme/2699

Valcarce, M., & Díaz, J. (2008). Initial Diagnostic Assessment To Support Learning. Cerme8.Metu.Edu.Tr. Retrieved from http://cerme8.metu.edu.tr/wgpapers/WG14/WG14_Codes_Valcarce.pdf

Weller, K., Clark, J., E, D., Loch, S., & McDonald, M. (2006). An examination of student performance data in recent RUMEC studies. Manuscript Submitted, 580. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:An+examination+of+student+performance+data+in+recent+RUMEC+studies#0




DOI: https://doi.org/10.15575/ja.v7i2.10824

Refbacks

  • There are currently no refbacks.


Jurnal Analisa  licensed under a Creative Commons International License. Attribution-ShareAlike 4.0 . Copyright protected by law

Jurnal Analisa has indexed by:

Indonesian Scientific Journal Database (ISJD)

 
Mailing Address
3th Floor, Departement of Mathematics Education, Faculty of Tarbiyah and Teacher Training, UIN Sunan Gunung Djati Bandung
E-mail: jurnalanalisa@uinsgd.ac.id