Tofu Whey-Based Media for Probiotic Lactiplantibacillus plantarum D4 as a Halal Starter Culture


Hikmah Maulidiyah(1), Irfan Mustafa(2), Yoga Dwi Jatmiko(3*), Salam A. Ibrahim(4)

(1) Universitas Brawijaya, Indonesia
(2) Universitas Brawijaya, Indonesia
(3) Universitas Brawijaya, Indonesia
(4) North Carolina A&T State University, United States
(*) Corresponding Author

Abstract


In recent years, the development of probiotic-based fermented products with halal status has been a concern. The use of growth medium has relied on de Man Rogosa and Sharpe (MRS) as a relatively expensive standard medium, and its halal status is still uncertain. Extensive research has been carried out to investigate the development of low-cost halal alternative media for the cultivation of probiotic lactic acid bacteria (LAB). This study aimed to develop a probiotic halal and low-cost culture medium using a tofu whey-based medium. This study used three tofu whey-based media – A (tofu whey 100%), B (tofu whey 94.5%, molasses 3%, skim milk 2.5%), C (tofu whey 92.5%, molasses 3%, cheese whey 2.5%, tomato extract 2%), and MRS broth as a standard medium. Bacterial populations, total sugars utilized, total lactic acids produced, low pH (2.0) tolerance, and high bile salt concentration (oxgall 1.5%) were assayed. The highest bacterial population after 48 h of incubation was shown by medium B compared to medium MRS (12.34 ± 0.87 and 11.48 ± 0.3 log CFU/mL). Total sugars utilized by 48.28 ± 2.89, 38.89 ± 6.94, 39.14 ± 4.24, and 76.00 ± 1.41 %; on the other hand, total lactic acids produced by 0.16 ± 0.12, 0.03 ± 0.04, 0.31 ± 0.03, and 2.25 ± 1.48 % in A, B, C, and MRS, respectively. Probiotic tolerance at low pH and the presence of bile salts of Lactiplantibacillus plantarum D4 consistently showed a high survival rate in medium B compared to MRS. Based on these results, the components and proportions used in medium B were suitable for the growth of L. plantarum D4 as a halal probiotic starter candidate.

Keywords


halal medium; halal starter; Lactiplantibacillus plantarum; probiotic; tofu whey

Full Text:

PDF

References


Adhawati, N., & Jatmiko, Y. D. (2023). Evaluation of jamu kunyit asam (Curcuma domestica Val . - Tamarindus indica L.) as probiotic carrier of Lactobacillus plantarum BP102. International Food Research Journal, 30(5), 1274–1284. https://doi.org/10.47836/ifrj.30.5.15

Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 45. https://doi.org/10.3390/foods10010045

AOAC International. (1995). Official Methods of Analysis of AOAC Interntional. In Journal of AOAC International (16 ed., Vol. 78, No. 3).

Ayad, A. A., El-rab, D. A. G., & Ibrahim, S. A. (2020). Nitrogen sources effect on Lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) by-products. Fermentation, 6(64), 2–11. https://doi.org/10.3390/fermentation6030064

Barbosa, H. S., Silveira, E. D. A., Jr, M. M., & Ernandes, J. R. (2016). Efficient very-high-gravity fermentation of sugarcane molasses by industrial yeast strains. Journal of The Institute of Brewing, 2015, 329–333. https://doi.org/10.1002/jib.317

Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002

Byakika, S., Mukisa, I. M., & Byaruhanga, Y. B. (2020). Sorghum malt extract as a growth medium for lactic acid bacteria cultures: A case of Lactobacillus plantarum MNC 21. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/6622207

Choi, G., Lee, N., & Paik, H. (2021). Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. Journal of Microbiology and Biotechnology, 31(5), 717–725. https://doi.org/10.4014/jmb.2103.03018

Corsetti, A., Ciarrocchi, A., & Prete, R. (2016). Lactic acid bacteria: Lactobacillus plantarum. In Encyclopedia of Dairy Sciences: Third edition (Vol. 4, pp. 206–217). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.00856-8

Fathana, H., Iqhrammullah, M., Rahmi, R., Adlim, M., & Lubis, S. (2021). Tofu wastewater-derived amino acids identification using LC-MS / MS and their uses in the modification of chitosan / TiO 2 film composite. Chemical Data Collections, 35(March). https://doi.org/10.1016/j.cdc.2021.100754

Gunkova, P. I., Buchilina, A. S., Maksimiuk, N. N., Bazarnova, Y. G., & Girel, K. S. (2021). Carbohydrate fermentation test of lactic acid starter cultures. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/852/1/012035

Gutiérrez, L. D., Vicente, L. S., Sáenz, J., & Esquivel, A. (2022). Biosynthesis of gamma ‑ aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri‑food by‑products. Scientific Reports, 12, 1–10. https://doi.org/10.1038/s41598-022-22875-w

Hanoune, S., Djeghri-Hocine, B., Kassas, Z., Derradji, Z., Boudour, A., & Boukhemis, M. (2015). Optimization of Lactobacillus fermentum DSM 20049 growth on whey and lupin based medium using response surface methodology. Advance Journal of Food Science and Technology, 9(9), 679–685. https://doi.org/10.19026/ajfst.9.1759

Hayek, Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 86(4), 490–502. https://doi.org/10.1017/S002202991900075X

Hayek, & Ibrahim, S. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 2013(November), 73–87. https://doi.org/10.4236/fns.2013.411A010

Hayek, Shahbazi, A., Awaisheh, S. S., Shah, N. P., & Ibrahim, S. A. (2013). Sweet potatoes as a basic component in developing a medium for the cultivation of lactobacilli. Bioscience, Biotechnology and Biochemistry, 77(11), 2248–2254. https://doi.org/10.1271/bbb.130508

Hongthong, N., Chumngoen, W., & Tan, F.-J. (2019). Influence of sucrose level and inoculation of Lactobacillus plantarum on the physicochemical , textural , microbiological , and sensory characteristics of Isan sausage ( Thai fermented pork sausage ). Animal Science Journal, October, 1–8. https://doi.org/10.1111/asj.13312

Ibrahim, S. A., Ahmed, S., & Song, D. (2009). Use of Tween 80 to enhance bile tolerance of Lactobacillus reuteri. Milchwissenchaft, 64(1), 29–31. http://doi.org/ 10.5555/20093109269

Irfan, Lubis, Y. M., Ryan, M., Yunita, D., & Lahmer, R. A. (2023). Effect of halal-certified slaughterhouses and storage time on microbiology and organoleptic quality of broiler chicken meat. Indonesian Journal of Halal Research, 5(3), 1–11. https://doi.org/10.15575/ijhar.v5i1.17390

Jain, R., & Venkatasubramanian, P. (2017). Sugarcane Molasses – A Potential Dietary Supplement in the Management of Iron Deficiency Anemia. Journal of Dietary Supplements, 14(5), 589–598. https://doi.org/10.1080/19390211.2016.1269145

Jannah, S. N., Pujiyanto, S., Rosiana, E., & Purwantisari, S. (2021). Formulation and optimization of alternative culture media for probiotic bacteria growth using tofu liquid waste. Journal of Physics: Conference Series, 1943(1). https://doi.org/10.1088/1742-6596/1943/1/012070

Kailasapathy, K. (2016). Chemical composition, physical, and functional properties of milk and milk ingredients. In Dairy Processing and Quality Assurance, Second Edition (pp. 77–105). John Wiley & Sons, Ltd.

Keddari, S., Boufadi, M. Y., Mokhtar, M., & Hamed, D. (2021). Culture of lactic acid bacteria in natural environments based on dates. Pharmacognosy Journal, 13(3), 675–681. https://doi.org/10.5530/pj.2021.13.86

Kim, J., Lee, M., Kim, M., Kim, G., & Yoon, S. (2022). Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. Journal of Microbiology and Biotechnology, 32(6), 783–791. https://doi.org/10.4014/jmb.2204.04029

Kurina, A. B., Solovieva, A. E., Khrapalova, I. A., & Artemyeva, A. M. (2021). Biochemical composition of tomato fruits of various colors. Vavilov Journal of Genetics and Breeding, 25(5), 514–527. https://doi.org/10.18699/VJ21.058

Kurniadi, M., & Frediansyah, A. (2017). Halal perspective of microbial bioprocess based-food products. Reaktor, 16(3), 147. https://doi.org/10.14710/reaktor.16.3.147-160

Kusmiyati, N., Massora, M., & Wicaksono, S. T. (2022). Potential analysis of cheese whey as an alternative media growth for Lactobacillus casei group. El-Hayah Jurnal Biologi, 8(4), 136–146. https://doi.org/10.18860/elha.v8i4.15800

Lee, K., Kang, S., & Choi, Y. J. (2013). A low-cost Lactobacillus salivarius L29 growth medium containing molasses and corn steep liquor allows the attainment of high levels of cell mass and lactic acid production Flask fermentation. African Journal of Biotechnology, 12(16), 2013–2018. https://doi.org/10.5897/AJB12.2597

Li, J., Zhang, L., Du, M., Han, X., Yi, H., & Guo, C. (2011). Effect of tween series on growth and cis-9, trans-11 conjugated linoleic acid production of Lactobacillus acidophilus F0221 in the presence of bile salts. International Journal of Molecular Sciences, 80(12), 9138–9154. https://doi.org/10.3390/ijms12129138

Lievore, P., Simões, D. R. S., & Silva, K. M. (2015). Chemical characterisation and application of acid whey in fermented milk. J Food Sci Technol, 52(April), 2083–2092. https://doi.org/10.1007/s13197-013-1244-z

Lustrato, G., Salimei, E., Alfano, G., Belli, C., Fantuz, F., Grazia, L., & Ranalli, G. (2013). Cheese whey recycling in traditional dairy food chain: effect of vinegar from whey in dairy cow nutrition. Acetic Acid Bacteria, 2(December), 47–53. https://doi.org/10.4081/aab.2013.s1.e8

Magan, J. B., Callaghan, T. F. O., Zheng, J., Zhang, L., Mandal, R., Hennessy, D., Fenelon, M. A., Wishart, D. S., Kelly, A. L., & Mccarthy, N. A. (2019). Impact of bovine diet on metabolomic profile of skim milk and whey protein ingredients. Metabolites, 9(305). https://doi.org/10.3390/metabo9120305

Manzoor, A., Qazi, J. I., Haq, I., Mukhtar, H., & Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering, 11(17), 1–10. https://doi.org/10.1186/s13036-017-0059-2

Marlida, Y., Harnentis, Azizah, Nur, Y. S., Adzitey, F., Julmohammad, N., & Huda, N. (2022). The possibility of a halal mix probiotic medium for the cultivation of Lactobacillus plantarum N16 and Saccharomyces cerevisiae. Potravinarstvo Slovak Journal of Food Sciences, 16, 279–286. https://doi.org/10.5219/1713

Mehta, B. M. (2015). Chemical composition of milk and milk products. In Handbook of Food Chemistry (pp. 1–34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41609-510.1007/978-3-642-41609-5_31-1

Mendonça, A. A., Pinto-neto, W. D. P., Alves, G., Santos, S., Morais, M. A. De, & Souza, R. B. De. (2023). Journey of the probiotic bacteria: Survival of the fittest. Microorganisms, 11(95). https://doi.org/10.3390/microorganisms11010095

Mousavi, R., Mottawea, W., Audet, M., & Hammami, R. (2022). Psychobiotic candidates with the gut microbiota in a continuous model of the human colon. Biology, 11(1311). https://doi.org/10.3390/biology11091311

Mujtahidah, T., & Kusuma, B. (2019). The influence of concentration liquid waste of tofu production to Daphnia sp cultivation biomass. Indonesian Journal of Tropical Aquatic, 2(2), 67–72.

Mulaw, G., Tessema, T. S., Muleta, D., & Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology, 2019. https://doi.org/10.1155/2019/7179514

Nostia, R., & Kurniawan, A. (2023). Analysis of solid and liquid waste characteristics of tofu industry in Bancar Village , Bungkal District , Ponorogo Regency. Jurnal Pembangunan Dan Alam Lestari, 14(1), 1–5. https://doi.org/10.21776/ub.jpal.2023.014.01.01

Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244–6249. https://doi.org/10.3168/jds.2019-17644

Panfilova, J., Ivantsova, M., & Selezneva, I. (2016). Energy efficient way of processing waste of milk production. ICSC 2016, 3008. https://doi.org/10.1051/e3sconf/20160603008

Papizadeh, M., Rohani, M., Nahrevanian, H., & Nezamedin, S. (2020). Using various approaches of design of experiments for high cell density production of the functionally probiotic Lactobacillus plantarum strain RPR42 in a cane molasses ‑ based medium. Current Microbiology, 77(8), 1756–1766. https://doi.org/10.1007/s00284-020-01979-4

Razzaghi, A., Valizadeh, R., Ghaffari, M. H., & Brito, A. F. (2020). Liquid molasses interacts with buffers to affect ruminal fermentation, milk fatty acid profile, and milk fat synthesis in dairy cows fed high-concentrate diets. Journal of Dairy Science, 103(5). https://doi.org/10.3168/jds.2019-17169

Reitermayer, D., Kafka, T. A., Lenz, C. A., & Vogel, R. F. (2018). Interrelation between tween and the membrane properties and high pressure tolerance of Lactobacillus plantarum. BMB Microbiology, 18(72), 1–14. https://doi.org/10.1186/s12866-018-1203-y

Senouci-rezkallah, K., Schmitt, P., & Jobin, M. P. (2011). Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiology, 28(3), 364–372. https://doi.org/10.1016/j.fm.2010.09.003

Śliżewska, K., & Chlebicz-Wójcik, A. (2020). Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology, 9(12), 1–13. https://doi.org/10.3390/biology9120423

Valli, V., Mar, A., Nunzio, M. Di, Danesi, F., Caboni, M. F., & Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf304416d

Wang, T., Lu, Y., Yan, H., Li, X., Wang, X., Shan, Y., Yi, Y., & Liu, B. (2020). Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS ‑ 8. Bioprocess and Biosystems Engineering, 43(3), 515–528. https://doi.org/10.1007/s00449-019-02246-y




DOI: https://doi.org/10.15575/ijhar.v6i1.30588

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Halal Research Indexed By:

          


Published By:

Halal Center

UIN Sunan Gunung Djati

Gedung Solahuddin Sanusi (Laboratorium Terpadu)

Jl. A.H. Nasution No. 105, Cibiru, Bandung, West Java 40614 - Indonesia 

Creative Commons License
Indonesian Journal of Halal Research by Halal Center UIN Sunan Gunung Djati Bandung is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uinsgd.ac.id/index.php/ijhar.