Tofu Whey-Based Media for Probiotic Lactiplantibacillus plantarum D4 as a Halal Starter Culture
DOI:
https://doi.org/10.15575/ijhar.v6i1.30588Keywords:
halal medium, halal starter, Lactiplantibacillus plantarum, probiotic, tofu wheyAbstract
References
Adhawati, N., & Jatmiko, Y. D. (2023). Evaluation of jamu kunyit asam (Curcuma domestica Val . - Tamarindus indica L.) as probiotic carrier of Lactobacillus plantarum BP102. International Food Research Journal, 30(5), 1274–1284. https://doi.org/10.47836/ifrj.30.5.15
Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 45. https://doi.org/10.3390/foods10010045
AOAC International. (1995). Official Methods of Analysis of AOAC Interntional. In Journal of AOAC International (16 ed., Vol. 78, No. 3).
Ayad, A. A., El-rab, D. A. G., & Ibrahim, S. A. (2020). Nitrogen sources effect on Lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) by-products. Fermentation, 6(64), 2–11. https://doi.org/10.3390/fermentation6030064
Barbosa, H. S., Silveira, E. D. A., Jr, M. M., & Ernandes, J. R. (2016). Efficient very-high-gravity fermentation of sugarcane molasses by industrial yeast strains. Journal of The Institute of Brewing, 2015, 329–333. https://doi.org/10.1002/jib.317
Bosma, E. F., Forster, J., & Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnology Advances, 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002
Byakika, S., Mukisa, I. M., & Byaruhanga, Y. B. (2020). Sorghum malt extract as a growth medium for lactic acid bacteria cultures: A case of Lactobacillus plantarum MNC 21. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/6622207
Choi, G., Lee, N., & Paik, H. (2021). Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. Journal of Microbiology and Biotechnology, 31(5), 717–725. https://doi.org/10.4014/jmb.2103.03018
Corsetti, A., Ciarrocchi, A., & Prete, R. (2016). Lactic acid bacteria: Lactobacillus plantarum. In Encyclopedia of Dairy Sciences: Third edition (Vol. 4, pp. 206–217). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.00856-8
Fathana, H., Iqhrammullah, M., Rahmi, R., Adlim, M., & Lubis, S. (2021). Tofu wastewater-derived amino acids identification using LC-MS / MS and their uses in the modification of chitosan / TiO 2 film composite. Chemical Data Collections, 35(March). https://doi.org/10.1016/j.cdc.2021.100754
Gunkova, P. I., Buchilina, A. S., Maksimiuk, N. N., Bazarnova, Y. G., & Girel, K. S. (2021). Carbohydrate fermentation test of lactic acid starter cultures. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/852/1/012035
Gutiérrez, L. D., Vicente, L. S., Sáenz, J., & Esquivel, A. (2022). Biosynthesis of gamma ‑ aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri‑food by‑products. Scientific Reports, 12, 1–10. https://doi.org/10.1038/s41598-022-22875-w
Hanoune, S., Djeghri-Hocine, B., Kassas, Z., Derradji, Z., Boudour, A., & Boukhemis, M. (2015). Optimization of Lactobacillus fermentum DSM 20049 growth on whey and lupin based medium using response surface methodology. Advance Journal of Food Science and Technology, 9(9), 679–685. https://doi.org/10.19026/ajfst.9.1759
Hayek, Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. Journal of Dairy Research, 86(4), 490–502. https://doi.org/10.1017/S002202991900075X
Hayek, & Ibrahim, S. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 2013(November), 73–87. https://doi.org/10.4236/fns.2013.411A010
Hayek, Shahbazi, A., Awaisheh, S. S., Shah, N. P., & Ibrahim, S. A. (2013). Sweet potatoes as a basic component in developing a medium for the cultivation of lactobacilli. Bioscience, Biotechnology and Biochemistry, 77(11), 2248–2254. https://doi.org/10.1271/bbb.130508
Hongthong, N., Chumngoen, W., & Tan, F.-J. (2019). Influence of sucrose level and inoculation of Lactobacillus plantarum on the physicochemical , textural , microbiological , and sensory characteristics of Isan sausage ( Thai fermented pork sausage ). Animal Science Journal, October, 1–8. https://doi.org/10.1111/asj.13312
Ibrahim, S. A., Ahmed, S., & Song, D. (2009). Use of Tween 80 to enhance bile tolerance of Lactobacillus reuteri. Milchwissenchaft, 64(1), 29–31. http://doi.org/ 10.5555/20093109269
Irfan, Lubis, Y. M., Ryan, M., Yunita, D., & Lahmer, R. A. (2023). Effect of halal-certified slaughterhouses and storage time on microbiology and organoleptic quality of broiler chicken meat. Indonesian Journal of Halal Research, 5(3), 1–11. https://doi.org/10.15575/ijhar.v5i1.17390
Jain, R., & Venkatasubramanian, P. (2017). Sugarcane Molasses – A Potential Dietary Supplement in the Management of Iron Deficiency Anemia. Journal of Dietary Supplements, 14(5), 589–598. https://doi.org/10.1080/19390211.2016.1269145
Jannah, S. N., Pujiyanto, S., Rosiana, E., & Purwantisari, S. (2021). Formulation and optimization of alternative culture media for probiotic bacteria growth using tofu liquid waste. Journal of Physics: Conference Series, 1943(1). https://doi.org/10.1088/1742-6596/1943/1/012070
Kailasapathy, K. (2016). Chemical composition, physical, and functional properties of milk and milk ingredients. In Dairy Processing and Quality Assurance, Second Edition (pp. 77–105). John Wiley & Sons, Ltd.
Keddari, S., Boufadi, M. Y., Mokhtar, M., & Hamed, D. (2021). Culture of lactic acid bacteria in natural environments based on dates. Pharmacognosy Journal, 13(3), 675–681. https://doi.org/10.5530/pj.2021.13.86
Kim, J., Lee, M., Kim, M., Kim, G., & Yoon, S. (2022). Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. Journal of Microbiology and Biotechnology, 32(6), 783–791. https://doi.org/10.4014/jmb.2204.04029
Kurina, A. B., Solovieva, A. E., Khrapalova, I. A., & Artemyeva, A. M. (2021). Biochemical composition of tomato fruits of various colors. Vavilov Journal of Genetics and Breeding, 25(5), 514–527. https://doi.org/10.18699/VJ21.058
Kurniadi, M., & Frediansyah, A. (2017). Halal perspective of microbial bioprocess based-food products. Reaktor, 16(3), 147. https://doi.org/10.14710/reaktor.16.3.147-160
Kusmiyati, N., Massora, M., & Wicaksono, S. T. (2022). Potential analysis of cheese whey as an alternative media growth for Lactobacillus casei group. El-Hayah Jurnal Biologi, 8(4), 136–146. https://doi.org/10.18860/elha.v8i4.15800
Lee, K., Kang, S., & Choi, Y. J. (2013). A low-cost Lactobacillus salivarius L29 growth medium containing molasses and corn steep liquor allows the attainment of high levels of cell mass and lactic acid production Flask fermentation. African Journal of Biotechnology, 12(16), 2013–2018. https://doi.org/10.5897/AJB12.2597
Li, J., Zhang, L., Du, M., Han, X., Yi, H., & Guo, C. (2011). Effect of tween series on growth and cis-9, trans-11 conjugated linoleic acid production of Lactobacillus acidophilus F0221 in the presence of bile salts. International Journal of Molecular Sciences, 80(12), 9138–9154. https://doi.org/10.3390/ijms12129138
Lievore, P., Simões, D. R. S., & Silva, K. M. (2015). Chemical characterisation and application of acid whey in fermented milk. J Food Sci Technol, 52(April), 2083–2092. https://doi.org/10.1007/s13197-013-1244-z
Lustrato, G., Salimei, E., Alfano, G., Belli, C., Fantuz, F., Grazia, L., & Ranalli, G. (2013). Cheese whey recycling in traditional dairy food chain: effect of vinegar from whey in dairy cow nutrition. Acetic Acid Bacteria, 2(December), 47–53. https://doi.org/10.4081/aab.2013.s1.e8
Magan, J. B., Callaghan, T. F. O., Zheng, J., Zhang, L., Mandal, R., Hennessy, D., Fenelon, M. A., Wishart, D. S., Kelly, A. L., & Mccarthy, N. A. (2019). Impact of bovine diet on metabolomic profile of skim milk and whey protein ingredients. Metabolites, 9(305). https://doi.org/10.3390/metabo9120305
Manzoor, A., Qazi, J. I., Haq, I., Mukhtar, H., & Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering, 11(17), 1–10. https://doi.org/10.1186/s13036-017-0059-2
Marlida, Y., Harnentis, Azizah, Nur, Y. S., Adzitey, F., Julmohammad, N., & Huda, N. (2022). The possibility of a halal mix probiotic medium for the cultivation of Lactobacillus plantarum N16 and Saccharomyces cerevisiae. Potravinarstvo Slovak Journal of Food Sciences, 16, 279–286. https://doi.org/10.5219/1713
Mehta, B. M. (2015). Chemical composition of milk and milk products. In Handbook of Food Chemistry (pp. 1–34). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41609-510.1007/978-3-642-41609-5_31-1
Mendonça, A. A., Pinto-neto, W. D. P., Alves, G., Santos, S., Morais, M. A. De, & Souza, R. B. De. (2023). Journey of the probiotic bacteria: Survival of the fittest. Microorganisms, 11(95). https://doi.org/10.3390/microorganisms11010095
Mousavi, R., Mottawea, W., Audet, M., & Hammami, R. (2022). Psychobiotic candidates with the gut microbiota in a continuous model of the human colon. Biology, 11(1311). https://doi.org/10.3390/biology11091311
Mujtahidah, T., & Kusuma, B. (2019). The influence of concentration liquid waste of tofu production to Daphnia sp cultivation biomass. Indonesian Journal of Tropical Aquatic, 2(2), 67–72.
Mulaw, G., Tessema, T. S., Muleta, D., & Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology, 2019. https://doi.org/10.1155/2019/7179514
Nostia, R., & Kurniawan, A. (2023). Analysis of solid and liquid waste characteristics of tofu industry in Bancar Village , Bungkal District , Ponorogo Regency. Jurnal Pembangunan Dan Alam Lestari, 14(1), 1–5. https://doi.org/10.21776/ub.jpal.2023.014.01.01
Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A., & Mammi, L. (2020). Short communication: Characterization of molasses chemical composition. Journal of Dairy Science, 103(7), 6244–6249. https://doi.org/10.3168/jds.2019-17644
Panfilova, J., Ivantsova, M., & Selezneva, I. (2016). Energy efficient way of processing waste of milk production. ICSC 2016, 3008. https://doi.org/10.1051/e3sconf/20160603008
Papizadeh, M., Rohani, M., Nahrevanian, H., & Nezamedin, S. (2020). Using various approaches of design of experiments for high cell density production of the functionally probiotic Lactobacillus plantarum strain RPR42 in a cane molasses ‑ based medium. Current Microbiology, 77(8), 1756–1766. https://doi.org/10.1007/s00284-020-01979-4
Razzaghi, A., Valizadeh, R., Ghaffari, M. H., & Brito, A. F. (2020). Liquid molasses interacts with buffers to affect ruminal fermentation, milk fatty acid profile, and milk fat synthesis in dairy cows fed high-concentrate diets. Journal of Dairy Science, 103(5). https://doi.org/10.3168/jds.2019-17169
Reitermayer, D., Kafka, T. A., Lenz, C. A., & Vogel, R. F. (2018). Interrelation between tween and the membrane properties and high pressure tolerance of Lactobacillus plantarum. BMB Microbiology, 18(72), 1–14. https://doi.org/10.1186/s12866-018-1203-y
Senouci-rezkallah, K., Schmitt, P., & Jobin, M. P. (2011). Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiology, 28(3), 364–372. https://doi.org/10.1016/j.fm.2010.09.003
Śliżewska, K., & Chlebicz-Wójcik, A. (2020). Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology, 9(12), 1–13. https://doi.org/10.3390/biology9120423
Valli, V., Mar, A., Nunzio, M. Di, Danesi, F., Caboni, M. F., & Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf304416d
Wang, T., Lu, Y., Yan, H., Li, X., Wang, X., Shan, Y., Yi, Y., & Liu, B. (2020). Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS ‑ 8. Bioprocess and Biosystems Engineering, 43(3), 515–528. https://doi.org/10.1007/s00449-019-02246-y
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish in Indonesian Journal of Halal Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Indonesian Journal of Halal Research by Halal Center UIN Sunan Gunung Djati Bandung is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uinsgd.ac.id/index.php/ijhar.