Physicochemical Properties of Halal Alternative Gelatin from Parrotfish (Scarus quoyi) Scales Optimized by Response Surface Methodology

Authors

  • Muammar Yulian Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Muhammad Reza Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Nofa Ramadani Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Rosi Hamama Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Raudhatul Fadhilah Universitas Muhammadiyah Pontianak, Indonesia
  • Yusrizal Akmal Universitas Almuslim, Indonesia
  • Kasim Sakran Abass University of Kirkuk, Iraq
  • Epa Paujiah Universitas Islam Negeri Sunan Gunung Djati Bandung, Indonesia
  • Sukree Hajisamae Prince of Songkla University Pattani Campus, Thailand
  • Ilham Zulfahmi Prince of Songkla University, Thailand & Universitas Syiah Kuala, Indonesia

DOI:

https://doi.org/10.15575/ijhar.v7i2.38678

Keywords:

extraction, fish scale waste, gelatin, halal assurance, response surface methodology

Abstract

The increasing demand for halal-friendly gelatin, combined with concerns over health risks associated with mammalian sources, has created a need for alternative raw materials. Fish scales from local species, such as parrotfish, offer a sustainable and promising option that has yet to be extensively explored. The study aims to investigate the physicochemical properties of gelatin extracted from the scales of the parrotfish (Scarus quoyi) scales. Response Surface Methodology (RSM) was employed to determine the optimal concentration of hydrochloric acid (HCl) and immersion time to maximize yield and quality. Physicochemical properties, including yield, moisture content, ash content, pH, and viscosity, were evaluated, and the structural characteristics of the gelatin were analyzed using Fourier-Transform Infrared Spectroscopy (FTIR). All processing steps were conducted in compliance with Halal Critical Control Points (HCCPs) to ensure the final product remained free from cross-contamination with non-halal substances. Response surface methodology optimization identified 4% HCl concentration and 29.4 hours of immersion as optimal conditions. These conditions produce gelatin with a yield, moisture, ash, pH, and viscosity are 14.5%, 4%, 0.48%, 4.15, and 1.78 cP, respectively. FTIR analysis confirmed that the extracted gelatin exhibited absorption peaks consistent with those of commercial gelatin, indicating a functional group similarity. Compared to gelatin from other fish species, parrotfish gelatin demonstrated a competitive yield and notably low moisture content, thereby enhancing its stability and storage potential. These findings highlight the potential of parrotfish scales as a sustainable source of halal gelatin, contributing to waste reduction and offering a viable alternative to mammalian gelatin.

Author Biographies

Muammar Yulian, Universitas Islam Negeri Ar-Raniry Banda Aceh

Departement of Chemistry Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Center for Halal Studies and Integrated Science, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Muhammad Reza, Universitas Islam Negeri Ar-Raniry Banda Aceh

Departement of Chemistry Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Center for Halal Studies and Integrated Science, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Nofa Ramadani, Universitas Islam Negeri Ar-Raniry Banda Aceh

Departement of Chemistry Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh, Indonesia.

Rosi Hamama, Universitas Islam Negeri Ar-Raniry Banda Aceh

Departement of Chemistry Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Aceh,  Indonesia.

Raudhatul Fadhilah, Universitas Muhammadiyah Pontianak

Department of Chemical Education, Faculty of Education and Teacher Training, Universitas Muhammadiyah Pontianak, Pontianak, West Kalimantan, Indonesia.

Yusrizal Akmal, Universitas Almuslim

Department of Aquaculture, Faculty of Agriculture, Universitas Almuslim, Bireuen, Aceh, Indonesia.

Kasim Sakran Abass, University of Kirkuk

College of Veterinary Medicine, Department of Physiology, Biochemistry, and Pharmacology, University of Kirkuk, Kirkuk, Iraq.

Epa Paujiah, Universitas Islam Negeri Sunan Gunung Djati Bandung

Department of Biology Education, Faculty of Tarbiyah and Teacher Training, UIN Sunan Gunung Djati, , Bandung, West Java, Indonesia.

Sukree Hajisamae, Prince of Songkla University Pattani Campus

Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University Pattani Campus, Muang, Pattani, Thailand.

Ilham Zulfahmi, Prince of Songkla University, Thailand & Universitas Syiah Kuala

Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia.

Department Marine and Coastal Resources Management, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand.

 

References

Abdullah, M. S. P., Noordin, M. I., Mohd Ismail, S. I., Mustapha, N. M., Jasamai, M., Danik, M. F., Wan Ismail, W. A., & Shamsuddin, A. F. (2018). Recent advances in the use of animal-sourced gelatine as natural polymers for food, cosmetics and pharmaceutical applications. Sains Malaysiana, 47(2), 323–336. https://doi.org/10.17576/jsm-2018-4702-15

Abedinia, A., Ariffin, F., Huda, N., & Nafchi, A. M. (2017). Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment. International Journal of Biological Macromolecules, 98, 586–594. https://doi.org/10.1016/j.ijbiomac.2017.01.139

Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Kumar, Y., Adeyemi, K. D., & Sazili, A. Q. (2017). Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocolloids, 63, 85–96. https://doi.org/10.1016/j.foodhyd.2016.08.007

Ahmed, M. A., Al-Kahtani, H. A., Jaswir, I., AbuTarboush, H., & Ismail, E. A. (2020). Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi Journal of Biological Sciences, 27(6), 1596–1601. https://doi.org/10.1016/j.sjbs.2020.03.022

Al-Kahtani, H. A., Jaswir, I., Ismail, E. A., Ahmed, M. A., Monsur Hammed, A., Olorunnisola, S., & Octavianti, F. (2017). Structural characteristics of camel-bone gelatin by demineralization and extraction. International Journal of Food Properties, 20(11), 2559–2568. https://doi.org/10.1080/10942912.2016.1244543

Al-Nimry, S., Dayah, A. A., Hasan, I., & Daghmash, R. (2021). Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates. Marine Drugs, 19(3), 145. https://doi.org/10.3390/md19030145

Alemán, A., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2011). Antioxidant activity of several marine skin gelatins. LWT - Food Science and Technology, 44(2), 407–413. https://doi.org/10.1016/j.lwt.2010.09.003

Alipal, J., Mohd Pu'ad, N. A. S., Lee, T. C., Nayan, N. H., Sahari, N., Basri, H., Idris, M. I., & Abdullah, H. Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240–250. https://doi.org/10.1016/j.matpr.2020.12.922

Almeida, P. F., & Lannes, S. C. da S. (2013). Extraction and physicochemical characterization of gelatin from chicken by-product. Journal of Food Process Engineering, 36(6), 824–833. https://doi.org/10.1111/jfpe.12051

Alrosan, M., Almajwal, A. M., Al-Qaisi, A., Gammoh, S., Alu’datt, M. H., Al Qudsi, F. R., Tan, T.-C., Mahmood, A. A. R., & Maghaydah, S. (2024). Molecular forces driving protein complexation of lentil and whey proteins: Structure-function relationships of trehalose-conjugated protein complexes on protein digestibility and solubility. Current Research in Structural Biology, 7, 100135. https://doi.org/10.1016/j.crstbi.2024.100135

Andakke, J. N., Rumengan, I. F. M., Nainggolan, H. H. Y., Parapat, L. R. M. E., Pandey, E., Suptijah, P., & Luntungan, A. H. (2020). Molecular structure of gelatin extracted from parrot (Scarus sp) fish scales. Jurnal Pesisir Dan Laut Tropis, 8(1), 15. https://doi.org/10.35800/jplt.8.1.2020.27286

Arnesen, J. A., & Gildberg, A. (2002). Preparation and characterisation of gelatine from the skin of harp seal (Phoca groendlandica). Bioresource Technology, 82(2), 191–194. https://doi.org/10.1016/S0960-8524(01)00164-X

Asih, I. D., Kemala, T., & Nurilmala, M. (2019). Halal gelatin extraction from patin fish bone (Pangasius hypophthalmus) by-product with ultrasound-assisted extraction. IOP Conference Series: Earth and Environmental Science, 299(1), 012061. https://doi.org/10.1088/1755-1315/299/1/012061

Atma, Y. (2022). Synthesis and application of fish gelatin for hydrogels/ composite hydrogels: A review. Biointerface Research in Applied Chemistry, 12(3), 3966–3976. https://doi.org/10.33263/BRIAC123.39663976

Bahar, A., Rusijono, R., & Kusumawati, N. (2018). Extraction and characterization of the base halal gelatin based on bovine bone. Proceedings of the Seminar Nasional Kimia - National Seminar on Chemistry (SNK 2018). https://doi.org/10.2991/snk-18.2018.10

Calixto, S., Ganzherli, N., Gulyaev, S., & Figueroa-Gerstenmaier, S. (2018). Gelatin as a photosensitive material. Molecules, 23(8), 2064. https://doi.org/10.3390/molecules23082064

Cao, T. H., Nguyen, T. T. O., Nguyen, T. M. H., Le, N. T., & Razumovskaya, R. G. (2017). Characteristics and physicochemical properties of gelatin extracted from scales of seabass (Lates calcarifer) and grey mullet (Mugil cephalus) in Vietnam. Journal of Aquatic Food Product Technology, 26(10), 1293–1302. https://doi.org/10.1080/10498850.2017.1390026

Chakka, A. K., Muhammed, A., Sakhare, P. Z., & Bhaskar, N. (2017). Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste and Biomass Valorization, 8(8), 2583–2593. https://doi.org/10.1007/s12649-016-9756-1

Chuaychan, S., Benjakul, S., & Sae-Leaw, T. (2017). Gelatin hydrolysate powder from the scales of spotted golden goatfish: Effect of drying conditions and juice fortification. Drying Technology, 35(10), 1195–1203. https://doi.org/10.1080/07373937.2016.1236129

da Trindade Alfaro, A., Fonseca, G. G., Balbinot, E., de Souza, N. E., & Prentice, C. (2014). Yield, viscosity, and gel strength of wami tilapia (Oreochromis urolepis hornorum) skin gelatin: Optimization of the extraction process. Food Science and Biotechnology, 23(3), 765–773. https://doi.org/10.1007/s10068-014-0103-7

Duan, R., Zhang, J., Xing, F., Konno, K., & Xu, B. (2011). Study on the properties of gelatins from skin of carp (Cyprinus carpio) caught in winter and summer season. Food Hydrocolloids, 25(3), 368–373. https://doi.org/10.1016/j.foodhyd.2010.07.002

Duthen, S., Levasseur-Garcia, C., Kleiber, D., Violleau, F., Vaca-Garcia, C., Tsuchikawa, S., Delgado Raynaud, C., & Daydé, J. (2021). Using near-infrared spectroscopy to determine moisture content, gel strength, and viscosity of gelatin. Food Hydrocolloids, 115, 106627. https://doi.org/10.1016/j.foodhyd.2021.106627

El-Bassyouni, G. T., Guirguis, O. W., & Abdel-Fattah, W. I. (2013). Morphological and macrostructural studies of dog cranial bone demineralized with different acids. Current Applied Physics, 13(5), 864–874. https://doi.org/10.1016/j.cap.2012.12.026

Esfahani, R., Jafari, S. M., Jafarpour, A., & Dehnad, D. (2019). Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocolloids, 90, 291–298. https://doi.org/10.1016/j.foodhyd.2018.12.044

Figueiredo, M., Cunha, S., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2011). Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chemical Engineering Research and Design, 89(1), 116–124. https://doi.org/10.1016/j.cherd.2010.04.013

Fonseca, J. de M., Valencia, G. A., Soares, L. S., Dotto, M. E. R., Campos, C. E. M., Moreira, R. de F. P. M., & Fritz, A. R. M. (2020). Hydroxypropyl methylcellulose-TiO2 and gelatin-TiO2 nanocomposite films: Physicochemical and structural properties. International Journal of Biological Macromolecules, 151, 944–956. https://doi.org/10.1016/j.ijbiomac.2019.11.082

Gelatin Manufacturers Institute of America. (2019). Standard testing methods for edible gelatin. Gelatin Manufacturers Institute of America. http://www.gelatin-gmia.com/uploads/1/1/8/4/118450438/gmia_official_methods_2019.pdf

Gómez-Guillén, M. C., Giménez, B., López-Caballero, M. E., & Montero, M. P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

Gumilar, J., Mahardika, D., & Suryaningsih, L. (2024). The effect of chloride acid submersion with various concentrations on viscosity, pH, and gel strength of rabbit skins gelatine. International Journal of Multidisciplinary Education and Research, 9(3), 16–19. https://www.multieducationjournal.com/assets/archives/2024/vol9issue3/9043.pdf

Heng, T. T., Tey, J. Y., Soon, K. S., & Woo, K. K. (2022). Utilizing fish skin of belida fish (Notopterus lopis) as a source of collagen: Production and rheology properties. Marine Drugs, 20(8), 525. https://doi.org/10.3390/md20080525

Herrera-Ruiz, A., Tovar, B. B., García, R. G., Tamez, M. F. L., & Mamidi, N. (2022). Nanomaterials-incorporated chemically modified gelatin methacryloyl-based biomedical composites: A novel approach for bone tissue engineering. Pharmaceutics, 14(12), 2645. https://doi.org/10.3390/pharmaceutics14122645

Hodgson, A. (2024). Dry gelatin ‘Photo-mechanical’ plates – their significance in the evolution of scientific & technical photography. The Imaging Science Journal, 72(1), 140–152. https://doi.org/10.1080/13682199.2023.2195701

Huang, T., Tu, Z., Wang, H., Shangguan, X., Zhang, L., Zhang, N., & Bansal, N. (2017). Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydrate Polymers, 156, 294–302. https://doi.org/10.1016/j.carbpol.2016.09.040

Ismail, N., & Abdullah, H. Z. (2016). Effects of hydrochloric acid concentration on the properties of black tilapia fish skin gelatin. Materials Science Forum, 840, 165–169. https://doi.org/10.4028/www.scientific.net/MSF.840.165

Karim, A. A., & Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23(3), 563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002

Koli, J. M., Basu, S., Nayak, B. B., Patange, S. B., Pagarkar, A. U., & Gudipati, V. (2012). Functional characteristics of gelatin extracted from skin and bone of tiger-toothed croaker (Otolithes ruber) and Pink perch (Nemipterus japonicus). Food and Bioproducts Processing, 90(3), 555–562. https://doi.org/10.1016/j.fbp.2011.08.001

Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N., & Scholtz, J. M. (2012). Toward a molecular understanding of protein solubility: Increased negative surface charge correlates with increased solubility. Biophysical Journal, 102(8), 1907–1915. https://doi.org/10.1016/j.bpj.2012.01.060

Kumosa, L. S., Zetterberg, V., & Schouenborg, J. (2018). Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury. Acta Biomaterialia, 65, 137–149. https://doi.org/10.1016/j.actbio.2017.10.020

Lv, L.-C., Huang, Q.-Y., Ding, W., Xiao, X.-H., Zhang, H.-Y., & Xiong, L.-X. (2019). Fish gelatin: The novel potential applications. Journal of Functional Foods, 63, 103581. https://doi.org/10.1016/j.jff.2019.103581

Machado, I., Marques, C. F., Martins, E., Alves, A. L., Reis, R. L., & Silva, T. H. (2023). Marine gelatin-methacryloyl-based hydrogels as cell templates for cartilage tissue engineering. Polymers, 15(7), 1674. https://doi.org/10.3390/polym15071674

Mahmoodani, F., Ardekani, V. S., See, S. F., Yusop, S. M., & Babji, A. S. (2014). Optimization and physical properties of gelatin extracted from pangasius catfish (Pangasius sutchi) bone. Journal of Food Science and Technology, 51(11), 3104–3113. https://doi.org/10.1007/s13197-012-0816-7

Mardiyah, U., Widjanarko, S. B., & Fibrianto, K. (2019). Optimization of time and temperature gelatin extraction from pink perch (Nemipterus bathybius) head using response surface methodology (RSM). The Journal of Experimental Life Sciences, 9(2), 97–104. https://doi.org/10.21776/ub.jels.2019.009.02.06

Martins, M. E. O., Sousa, J. R., Claudino, R. L., Lino, S. C. O., Vale, D. A. do, Silva, A. L. C., Morais, J. P. S., De Souza Filho, M. de S. M., & De Souza, B. W. S. (2018). Thermal and chemical properties of gelatin from tilapia (Oreochromis niloticus) scale. Journal of Aquatic Food Product Technology, 27(10), 1120–1133. https://doi.org/10.1080/10498850.2018.1535530

Mhd Sarbon, N., Badii, F., & Howell, N. K. (2013). Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocolloids, 30(1), 143–151. https://doi.org/10.1016/j.foodhyd.2012.05.009

Mushtaq, F., Raza, Z. A., Batool, S. R., Zahid, M., Onder, O. C., Rafique, A., & Nazeer, M. A. (2022). Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International Journal of Biological Macromolecules, 218, 601–633. https://doi.org/10.1016/j.ijbiomac.2022.07.168

Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18(4), 581–592. https://doi.org/10.1016/j.foodhyd.2003.08.009

Nagai, T., Izumi, M., & Ishii, M. (2004). Fish scale collagen. Preparation and partial characterization. International Journal of Food Science and Technology, 39(3), 239–244. https://doi.org/10.1111/j.1365-2621.2004.00777.x

Nasution, A. Y., Harmita, & Harahap, Y. (2018). Karakterisasi gelatin hasil ekstraksi dari kulit ikan patin (Pangasius hypophthalmus) dengan proses asam dan basa. Pharmaceutical Sciences and Research, 5(3), 142–151. https://doi.org/10.7454/psr.v5i3.4029

National Standardization Agency. (1995). SNI 06-3735-1995: Mutu dan cara uji gelatin. National Standardization Agency. https://www.bsn.go.id

National Standardization Agency. (2018). SNI 01-2891-2018: Food quality testing methods. National Standardization Agency. https://www.bsn.go.id

Nurilmala, M., Suryamarevita, H., Husein Hizbullah, H., Jacoeb, A. M., & Ochiai, Y. (2022). Fish skin as a biomaterial for halal collagen and gelatin. Saudi Journal of Biological Sciences, 29(2), 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056

Phillips, G. O., & Williams, P. A. (2011). Handbook of food proteins. Woodhead Publishing Limited. https://doi.org/10.1533/9780857093639

Prihanto, A. A., Jaziri, A. A., Pratomo, M. D., Putri, S. E., Fajriati, C., Nurdiani, R., & Firdaus, M. (2022). Characteristics of collagen from parrotfish (Chlorurus sordidus), tiger grouper (Epinephelus fuscoguttatus) and pink ear emperor (Lethrinus lentjan): Effect of acetic acid concentration and extraction time. Online Journal of Biological Sciences, 22(1), 26–35. https://doi.org/10.3844/ojbsci.2022.26.35

Putra, R. D., Siringoringo, R. M., Abrar, M., Abrar, M., Purnamasari, N. W., Purnamasari, N. W., & Syakti, A. D. (2020). The Pattern of herbivorous fish assemblages in the in western and eastern outermost island Indonesia. Omni-Akuatika, 16(2), 116. https://doi.org/10.20884/1.oa.2020.16.2.805

Qing, Q., & Wyman, C. E. (2011). Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresource Technology, 102(2), 1359–1366. https://doi.org/10.1016/j.biortech.2010.09.001

Qiu, Y.-T., Wang, Y.-M., Yang, X.-R., Zhao, Y.-Q., Chi, C.-F., & Wang, B. (2019). Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: Preparation, identification and activity evaluation. Marine Drugs, 17(10), 565. https://doi.org/10.3390/md17100565

Rachmad, B., Suharti, R., Irayana, D. A., & Zulkifli, D. (2018). Distribusi spasial ikan famili Scaridae di perairan Taman Nasional Bunaken, Sulawesi Utara. Jurnal Kelautan Dan Perikanan Terapan (JKPT), 1(2), 69–76. https://doi.org/10.15578/jkpt.v1i2.7260

Rafieian, F., Keramat, J., & Shahedi, M. (2015). Physicochemical properties of gelatin extracted from chicken deboner residue. LWT - Food Science and Technology, 64(2), 1370–1375. https://doi.org/10.1016/j.lwt.2015.04.050

Rahaningmas, J. M., & Mansyur, A. (2018). Influence of differences bait types on the catching result of kakatua fish (family Scaridae) using handlines. Jurnal Sumberdaya Akuatik Indopasifik, 2(1), 25–34. https://doi.org/10.30862/jsai-fpik-unipa.2018.Vol.2.No.1.45

Rawdkuen, S., Thitipramote, N., & Benjakul, S. (2013). Preparation and functional characterisation of fish skin gelatin and comparison with commercial gelatin. International Journal of Food Science & Technology, 48(5), 1093–1102. https://doi.org/10.1111/ijfs.12067

Said, M. I. (2020). Role and function of gelatin in the development of the food and non-food industry: A review. IOP Conference Series: Earth and Environmental Science, 492(1), 012086. https://doi.org/10.1088/1755-1315/492/1/012086

Scott, G., & Awika, J. M. (2023). Effect of protein–starch interactions on starch retrogradation and implications for food product quality. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2081–2111. https://doi.org/10.1111/1541-4337.13141

Shiao, W.-C., Wu, T.-C., Kuo, C.-H., Tsai, Y.-H., Tsai, M.-L., Hong, Y.-H., & Huang, C.-Y. (2021). Physicochemical and antioxidant properties of gelatin and gelatin hydrolysates obtained from extrusion-pretreated fish (Oreochromis sp.) scales. Marine Drugs, 19(5), 275. https://doi.org/10.3390/md19050275

Sockalingam, K., & Abdullah, H. Z. (2015). Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. AIP Conference Proceedings, 020053. https://doi.org/10.1063/1.4919191

Sompie, M., Surtijono, S. E., Pontoh, J. H. W., & Lontaan, N. N. (2015). The Effects of acetic acid concentration and extraction temperature on physical and chemical properties of pigskin gelatin. Procedia Food Science, 3, 383–388. https://doi.org/10.1016/j.profoo.2015.01.042

Sultana, S., Ali, M. E., & Ahamad, M. N. U. (2018). Gelatine, collagen, and single cell proteins as a natural and newly emerging food ingredients. In Preparation and Processing of Religious and Cultural Foods (pp. 215–239). Elsevier. https://doi.org/10.1016/B978-0-08-101892-7.00011-0

Sun, W., Lu, Q., Chen, J., Fan, X., Zhan, S., Yang, W., Huang, T., & Li, F. (2025). Influences of pH on gelling and digestion–fermentation properties of fish gelatin–polysaccharide hydrogels. Foods, 14(15), 2631. https://doi.org/10.3390/foods14152631

Tkaczewska, J., Morawska, M., Kulawik, P., & Zajac, M. (2018). Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocolloids, 81, 169–179. https://doi.org/10.1016/j.foodhyd.2018.02.048

Tu, Z., Huang, T., Wang, H., Sha, X., Shi, Y., Huang, X., Man, Z., & Li, D. (2015). Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology, 52(4), 2166–2174. https://doi.org/10.1007/s13197-013-1239-9

Tümerkan, E. T. A. (2021). Sustainable utilization of gelatin from animal-based agri–food waste for the food industry and pharmacology. In Valorization of Agri-Food Wastes and By-Products (pp. 425–442). Elsevier. https://doi.org/10.1016/B978-0-12-824044-1.00041-6

Usman, M., Sahar, A., Inam-Ur-Raheem, M., ur Rahman, U., Sameen, A., & Aadil, R. M. (2022). Gelatin extraction from fish waste and potential applications in food sector. International Journal of Food Science & Technology, 57(1), 154–163. https://doi.org/10.1111/ijfs.15286

Wang, L., An, X., Yang, F., Xin, Z., Zhao, L., & Hu, Q. (2008). Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chemistry, 108(2), 616–623. https://doi.org/10.1016/j.foodchem.2007.11.017

Wang, L., Li, P., Ren, Y., Bai, F., Wang, J., Zhang, Y., Jin, W., El-Seedi, H., & Gao, R. (2021). A novel extraction approach and unique physicochemical properties of gelatin from the swim bladder of sturgeon. Journal of the Science of Food and Agriculture, 101(7), 2912–2919. https://doi.org/10.1002/jsfa.10923

Wang, Q., Jin, Y., & Xiong, Y. L. (2018). Heating-Aided pH shifting modifies hemp seed protein structure, cross-linking, and emulsifying properties. Journal of Agricultural and Food Chemistry, 66(41), 10827–10834. https://doi.org/10.1021/acs.jafc.8b03901

Wang, Y., & Regenstein, J. M. (2009). Effect of EDTA, HCl, and citric acid on Ca salt removal from Asian (silver) carp scales prior to gelatin extraction. Journal of Food Science, 74(6), 1–6. https://doi.org/10.1111/j.1750-3841.2009.01202.x

Wangtueai, S., Siebenhandl-Ehn, S., & Haltrich, D. (2016). Optimization of the preparation of gelatin hydrolysates with antioxidative activity from lizardfish (Saurida spp.) scales gelatin. Chiang Mai Journal of Science, 43(1), 68–79. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=6372

Winarti, S., Sarofa, U., & Prihardi, M. Y. R. (2021). The effect of type and concentration of acid on the characteristics of gelatine from bones of milkfish (Chanos chanos). Food Research, 5(4), 404–409. https://doi.org/10.26656/fr.2017.5(4).690

Zhang, F., Xu, S., & Wang, Z. (2011). Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food and Bioproducts Processing, 89(3), 185–193. https://doi.org/10.1016/j.fbp.2010.05.003

Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J. M., & Lin, L. (2016). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience, 13, 41–48. https://doi.org/10.1016/j.fbio.2015.12.005

Zhou, P., & Regenstein, J. M. (2004). Optimization of extraction conditions for pollock skin gelatin. Journal of Food Science, 69(5), 1–6. https://doi.org/10.1111/j.1365-2621.2004.tb10704.x

Zulfahmi, I., Apriansyah, M., Batubara, A. S., Kautsari, N., Sumon, K. A., Rahman, M. M., & Nur, F. M. (2022). Commercial marine fish species from Weh Island, Indonesia: Checklist, distribution pattern and conservation status. Biodiversitas Journal of Biological Diversity, 23(4), 1977–1989. https://doi.org/10.13057/biodiv/d230432

Downloads

Published

2025-08-31

How to Cite

Yulian, M., Reza, M., Ramadani, N., Hamama, R., Fadhilah, R., Akmal, Y., … Zulfahmi, I. (2025). Physicochemical Properties of Halal Alternative Gelatin from Parrotfish (Scarus quoyi) Scales Optimized by Response Surface Methodology. Indonesian Journal of Halal Research, 7(2), 78–91. https://doi.org/10.15575/ijhar.v7i2.38678

Issue

Section

Articles

Citation Check