Laser-Induced Breakdown Spectroscopy (LIBS) Coupled with PCA and PLS for Identification and Adulteration Detection of Halal Meat Products

Authors

  • Khairunnas Ahmad Universitas Syiah Kuala, Indonesia
  • Saiful Saiful Universitas Syiah Kuala, Indonesia
  • Syahrun Nur Abdulmadjid Universitas Syiah Kuala, Indonesia
  • Siswoyo Prasetyo Chang Gung University, Taiwan, Province of China

DOI:

https://doi.org/10.15575/ijhar.v7i2.42382

Keywords:

adulteration detection, laser-induced breakdown spectroscopy, meat identification, partial least squares, principal component analysis

Abstract

Pork adulteration in halal meat is a significant issue in Indonesia, emphasizing the need for accurate methods to ensure product authenticity and protect consumers. This study aims to identify various meat products and evaluate the use of Laser-Induced Breakdown Spectroscopy (LIBS) in combination with Principal Component Analysis (PCA) and Partial Least Squares (PLS) for detecting meat adulteration. Samples were collected from various sources and analyzed using LIBS, with PCA used to distinguish meat species qualitatively and PLS to assess adulteration quantitatively. LIBS effectively distinguishes meat types, while PCA successfully identifies meat samples based on the intensity of the elemental compositions. PLS achieves high accuracy R2 > 0.99 in detecting pork adulteration in beef, buffalo, mutton, and chicken, surpassing single-line emission regression methods with low LOD (2.65%, 4.69%, 2.38%, and 3.41%) and LOQ (8.08%, 14.23%, 7.23%, and 10.34%) values. This study demonstrates that LIBS combined with PCA and PLS is a feasible and accurate method for identifying various meat types and detecting pork adulteration. The approach offers a reliable solution for addressing meat adulteration issues and ensuring halal application of LIBS with PCA and PLS for pork detection and quantification in halal meat product compliance.

Author Biography

Saiful Saiful, Universitas Syiah Kuala

Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala

References

Ahmad, K., Prasetyo, S., Zaitun, Z., & Hajashafira, C. (2024). Novel approach of determining the best absorbent for the quantification of aqueous analyte using laser-induced breakdown spectroscopy (LIBS): Zeolite versus bentonite. Narra X, 2(2), e159. https://doi.org/10.52225/narrax.v2i2.159

Ahmad, K., Saiful, S., Nur, S., Iqhrammullah, M., & Febriani, F. (2023). Identification and analysis of meat species using laser induced breakdown spectroscopy (LIBS): A review. Journal of Carbazon, 1(2), 1–11. https://doi.org/10.24815/jocarbazon.v2i1.35080

Bilge, G., Velioglu, H. M., Sezer, B., Eseller, K. E., & Boyaci, I. H. (2016). Identification of meat species by using laser-induced breakdown spectroscopy. Meat Science, 119, 118–122. https://doi.org/10.1016/j.meatsci.2016.04.035

Candogan, K., Altuntas, E. G., & Igci, N. (2021). Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) spectroscopy. Food Engineering Reviews, 13(1), 66–91. https://doi.org/10.1007/s12393-020-09251-y

Chis, L.-M., & Vodnar, D. C. (2019). Detection of the species of origin for pork, chicken and beef in meat food products by real-time PCR. Safety, 5(4), 83. https://doi.org/10.3390/safety5040083

Dashti, A., Weesepoel, Y., Müller-Maatsch, J., Parastar, H., Kobarfard, F., Daraei, B., & Yazdanpanah, H. (2022). Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchemical Journal, 181, 107735. https://doi.org/10.1016/j.microc.2022.107735

Dilla, Z. U., & Fathurohman, M. S. (2021). Implementasi halal traceability supply chain dengan model supply chain operation reference (SCOR) industri makanan halal. Jurnal Ekonomi Syariah Teori Dan Terapan, 8(5), 617–629. https://doi.org/10.20473/vol8iss20215pp617-629

Fengou, L.-C., Lytou, A. E., Tsekos, G., Tsakanikas, P., & Nychas, G.-J. E. (2024). Features in visible and Fourier transform infrared spectra confronting aspects of meat quality and fraud. Food Chemistry, 440, 138184. https://doi.org/10.1016/j.foodchem.2023.138184

Ferreira, D. S., Babos, D. V., Lima-Filho, M. H., Castello, H. F., Olivieri, A. C., Verbi Pereira, F. M., & Pereira-Filho, E. R. (2024). Laser-induced breakdown spectroscopy (LIBS): calibration challenges, combination with other techniques, and spectral analysis using data science. Journal of Analytical Atomic Spectrometry, 39(12), 2949–2973. https://doi.org/10.1039/D4JA00250D

Gecaj, R. M., Muji, S., Ajazi, F. C., Berisha, B., Kryeziu, A., & Ismaili, M. (2021). Investigation of pork meat in chicken- and beef-based commercial products by ELISA and real-time PCR sold at retail in Kosovo. Czech Journal of Food Sciences, 39(5), 368–375. https://doi.org/10.17221/164/2020-CJFS

Gegenschatz, S. A., Chiappini, F. A., Teglia, C. M., Munoz de la Pena, A., & Goicoechea, H. C. (2022). Binding the gap between experiments, statistics, and method comparison: A tutorial for computing limits of detection and quantification in univariate calibration for complex samples. Analytica Chimica Acta, 1209, 339342. https://doi.org/10.1016/j.aca.2021.339342

Guo, L., Zheng, W., Chen, F., Wang, W., Zhang, D., Hu, Z., & Chu, Y. (2021). Meat species identification accuracy improvement using sample set portioning based on joint x–y distance and laser-induced breakdown spectroscopy. Applied Optics, 60(20), 5826. https://doi.org/10.1364/AO.430980

Indahl, U. G. (2020). The O-PLS methodology for orthogonal signal correction—is it correcting or confusing? Journal of Chemometrics, 34(1), e2884. https://doi.org/10.1002/cem.2884

Kepes, E., Porizka, P., Klus, J., Modlitbova, P., & Kaiser, J. (2018). Influence of baseline subtraction on laser-induced breakdown spectroscopic data. Journal of Analytical Atomic Spectrometry, 33(12), 2107–2115. https://doi.org/10.1039/C8JA00209F

Khusun, H., Februhartanty, J., Anggraini, R., Mognard, E., Alem, Y., Noor, M. I., Karim, N., Laporte, C., Poulain, J.-P., Monsivais, P., & Drewnowski, A. (2022). Animal and plant protein food sources in Indonesia differ across socio-demographic groups: Socio-cultural research in protein transition in Indonesia and Malaysia. Frontiers in Nutrition, 9, 762459. https://doi.org/10.3389/fnut.2022.762459

Lestari, D., Rohman, A., Syofyan, S., Yuliana, N. D., Bt, K., Bakar, A., Hamidi, D., Group, F., & Lestari, L. L. C. D. (2022). Analysis of beef meatballs with rat meat adulteration using fourier transform infrared (FTIR) spectroscopy in combination with chemometrics. International Journal of Food Properties, 25(1), 1446–1457. https://doi.org/10.1080/10942912.2022.2083637

Maisurah, S. S., Dandekar, V. D., Dhaliwal, I. K., & Al-Gunaid, H. T. (2024). Low-cost and easy-to-use light spectroscopy can be used to monitor release behavior of essential oils. Narra X, 2(2), e155. https://doi.org/10.52225/narrax.v2i2.155

Mualim, M., Latif, H., Pisestyani, H., & Rahayu, P. (2024). Analysis of species adulteration in beef sausage using real-time polymerase chain reaction in Makassar, Indonesia. Veterinary World, 17(10), 2355–2364. https://doi.org/10.14202/vetworld.2024.2355-2364

Ni’mah, A., Kartikasari, Y., Pratama, A. D., Kartikasari, L. R., Hertanto, B. S., & Cahyadi, M. (2016). Detection of pork contamination in fresh and cooked beef using genetic marker mitochondrial-DNA cytochrome b by duplex-PCR. Journal of the Indonesian Tropical Animal Agriculture, 41(1), 7–12. https://doi.org/10.14710/jitaa.41.1.7-12

Nunes, K. M., Andrade, M. V. O., Almeida, M. R., Fantini, C., & Sena, M. M. (2019). Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan. Microchemical Journal, 147, 582–589. https://doi.org/10.1016/j.microc.2019.03.076

Olivieri, A. C. (2015). Practical guidelines for reporting results in single- and multi-component analytical calibration: A tutorial. Analytica Chimica Acta, 868, 10–22. https://doi.org/10.1016/j.aca.2015.01.017

Robert, C., Fraser-Miller, S. J., Jessep, W. T., Bain, W. E., Hicks, T. M., Ward, J. F., Craigie, C. R., Loeffen, M., & Gordon, K. C. (2021). Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chemistry, 343, 128441. https://doi.org/10.1016/j.foodchem.2020.128441

Rohman, A., Orbayinah, S., Hermawan, A., Sudjadi, S., Windarsih, A., & Handayani, S. (2022). The development of real-time polymerase chain reaction for identification of beef meatball. Applied Food Research, 2(2), 100148. https://doi.org/10.1016/j.afres.2022.100148

Sarno, R., Triyana, K., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Detecting pork adulteration in beef for halal authentication using an optimized electronic nose system. IEEE Access, 8, 221700–221711. https://doi.org/10.1109/ACCESS.2020.3043394

Sezer, B., Bjelak, A., Murat Velioglu, H., & Hakki Boyaci, I. (2022). Identification of meat species in processed meat products by using protein based laser induced breakdown spectroscopy assay. Food Chemistry, 372, 131245. https://doi.org/10.1016/j.foodchem.2021.131245

Sezer, B., Bjelak, A., Velioglu, H. M., & Boyaci, I. H. (2021). Protein based evaluation of meat species by using laser induced breakdown spectroscopy. Meat Science, 172, 108361. https://doi.org/10.1016/j.meatsci.2020.108361

Siddiqui, M. A., H. Md Khir, M., Ullah, Z., Al Hasan, M., Saboor, A., & Ahmed Magsi, S. (2023). Infrared spectroscopy-based chemometric analysis for lard differentiation in meat samples. Computers, Materials & Continua, 75(2), 2859–2871. https://doi.org/10.32604/cmc.2023.034164

Sin, K. Y., & Sin, M. C. (2019). Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system. Cogent Engineering, 6(1), 1599149. https://doi.org/10.1080/23311916.2019.1599149

Siswara, H. N., Erwanto, Y., & Suryanto, E. (2022). Study of meat species adulteration in Indonesian commercial beef meatballs related to halal law implementation. Frontiers in Sustainable Food Systems, 6, 882031. https://doi.org/10.3389/fsufs.2022.882031

Song, W., Afgan, M. S., Yun, Y.-H., Wang, H., Cui, J., Gu, W., Hou, Z., & Wang, Z. (2022). Spectral knowledge-based regression for laser-induced breakdown spectroscopy quantitative analysis. Expert Systems with Applications, 205, 117756. https://doi.org/10.1016/j.eswa.2022.117756

Sun, H., Song, C., Lin, X., & Gao, X. (2022). Identification of meat species by combined laser-induced breakdown and Raman spectroscopies. Spectrochimica Acta Part B: Atomic Spectroscopy, 194, 106456. https://doi.org/10.1016/j.sab.2022.106456

Suryawan, G. Y., Suardana, I. W., & Wandia, I. N. (2020). Sensitivity of polymerase chain reaction in the detection of rat meat adulteration of beef meatballs in Indonesia. Veterinary World, 13(5), 905–908. https://doi.org/10.14202/vetworld.2020.905-908

Ummami, R., Ramandani, D., Airin, C. M., Husni, A., & Astuti, P. (2022). Uji kualitas dan uji cemaran daging babi pada daging sapi di beberapa pasar tradisional di Yogyakarta. Jurnal Ilmu Peternakan Dan Veteriner Tropis (Journal of Tropical Animal and Veterinary Science), 12(2), 151–160. https://doi.org/10.46549/jipvet.v12i2.277

Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Additives & Contaminants: Part A, 37(1), 19–38. https://doi.org/10.1080/19440049.2019.1675909

Velioglu, H. M., Sezer, B., Bilge, G., Baytur, S. E., & Boyaci, I. H. (2018). Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Meat Science, 138, 28–33. https://doi.org/10.1016/j.meatsci.2017.12.003

Virgilio, A., Silva, A. B. S., Nogueira, A. R. A., Nóbrega, J. A., & Donati, G. L. (2020). Calculating limits of detection and defining working ranges for multi-signal calibration methods. Journal of Analytical Atomic Spectrometry, 35(8), 1614–1620. https://doi.org/10.1039/D0JA00212G

Wu, H., Qian, C., Wang, R., Wu, C., Wang, Z., Wang, L., Zhang, M., Ye, Z., Zhang, F., He, J., & Wu, J. (2020). Identification of pork in raw meat or cooked meatballs within 20 min using rapid PCR coupled with visual detection. Food Control, 109, 106905. https://doi.org/10.1016/j.foodcont.2019.106905

Yörük, N. G. (2021). A comparison of ELISA and real-time PCR kits for meat species identification analysis. European Food Research and Technology, 247(10), 2421–2429. https://doi.org/10.1007/s00217-021-03803-0

Zhou, S., Kuang, H., & Liu, L. (2020). Development of an ic-ELISA and colloidal gold strip for the detection of the beta-blocker carazolol. Food and Agricultural Immunology, 31(1), 217–230. https://doi.org/10.1080/09540105.2019.1710113

Zulkifli, B., Fakri, F., Odigie, J., Nnabuife, L., Isitua, C. C., & Chiari, W. (2023). Chemometric-empowered spectroscopic techniques in pharmaceutical fields: A bibliometric analysis and updated review. Narra X, 1(1), e80. https://doi.org/10.52225/narrax.v1i1.80

Downloads

Published

2025-08-31

How to Cite

Ahmad, K., Saiful, S., Abdulmadjid, S. N., & Prasetyo, S. (2025). Laser-Induced Breakdown Spectroscopy (LIBS) Coupled with PCA and PLS for Identification and Adulteration Detection of Halal Meat Products. Indonesian Journal of Halal Research, 7(2), 110–124. https://doi.org/10.15575/ijhar.v7i2.42382

Issue

Section

Articles

Citation Check