Identifikasi dan uji efektivitas rizobakteri dalam meningkatkan hasil tanaman kacang tanah


Khamdan Khalimi(1), Wayan Anik Leana(2*)

(1) Fakultas Pertanian Universitas Udayana, Indonesia
(2) Fakultas Pertanian Universitas Jenderal Soedirman, Indonesia
(*) Corresponding Author

Abstract


In order to increase groundnut productivity, it is necessary to find agents that can  improve  the  growth  and  yield  of it.  This  study  was  done  to determine the potential use of rhizobacteria to promote the growth and increase the yield of groundnut under green house experiment. The research was conducted in the plant disease laboratory, Faculty of Agriculture, Udayana University, in June 2022-January 2023. Five isolates of rhizobacteria namely FN1, FN2, FL3, FL4, and FL5 were tested for their effectiveness in promoting the growth, increase the yield, and protein content of groundnut. Molecular identification based on 16S rRNA gene sequence showed that FN1 and FL5 were similar to Klebsiella pneumonia with the similarity level at 98%. FN2 was similar to Klebsiella variicola with 99% similarity, FL3 was similar to Proteus mirabilis with 100% similarity, and FL4 wassimilar to Providencia rettgeri with 99% similarity. Rhizobacteria treatments significantly improved the groundnut growth, in which plant height, dry weight of shoot, dry weight of root, chlorophyll content, and the number of nodule significantly (p<0.05) higher compared to control. Yield component such the number of pod per plant, weight of pod per plant, water content and protein content in the seed of treated plants were significantly higher than control. These rhizobacteria may be further developed as plant growth promoting agents to increase the yield  and protein content of groundnut.

ABSTRAK 

Pemanfaatan mikroba yang bisa meningkatkan pertumbuhan dan hasil kacang tanah sangat penting untuk meningkatkan produksi. Penelitian ini menguji tentang potenis rizobakteri untuk meningkatkan pertumbuhan dan hasil kacang tanah yang dibudidayakan pada greenhouse. Penelitian dilakukan di lab penyakit tumbuhan, fakultas pertanian universitas udayana, pada bulan Juni 2022-januari 2023.  Lima isolat rizobakteri: FN1, FN2, FL3, FL4, dan FL5 telah diujikan untuk mengetahui kemampuan dalam meningkatkan pertumbuhan, hasil serta kandungan protein kacang tanah. Analisis molekuler berbasis 16S rRNA menunjukkan isolat FNI dan FL5 memiliki 98% kemiripan dengan Klebsiella pneumonia. Isolat FN2 memiliki 99% kemiripan dengan Klebsiella variicola, isolat FL3 mirip dengan Proteus mirabilis pada tingkat 100%, dan isolat FL4 memiliki 99% kemiripan dengan Providencia rettgeri. Perlakuan dengan isolat rizobakteri menunjukkan hasil yang signifikan (p<0.05) pada pertumbuhan kacang tanah seperti tinggi tanaman, berat kering brangkas, berat kering akar, kandungan klorofil daun dan jumlah bintil akar dibandingkan dengan kontrol. Jumlah polong, berat polong per tanaman, kadar air dan kandungan protein pada tanaman juga menunjukkan hasil yang lebih tinggi dibanding kontrol. Hal ini menunjukkan rizobakteri potensial dikembangkan untuk meningkatkan pertumbuhan, hasil dan kandungan protein kacang tanah.


Keywords


Hasil, Kacang Tanah, Protein, Rizobakteri

Full Text:

PDF

References


Abel, S., Theologis, A. (2010). Odyssey of auxin. Cold Spring Harbor Perspectives in Biology 2(a004572): 1-13.

Ahmad, M., Zahir, Z. A., Khalid, M., Nazli, F., and Arshad, M. (2013). Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol. Biochem. 63, 170–176. doi: 10.1016/j.plaphy.2012.11.024.

Baig, M.M.V., Mia, B., Muley, S.M. (2002). Enhanced growth of groundnut by plant growth promoting rhizobacteria. International Arachis Newsletter 22: 60-63.

Bhardwaj, G., Shah, R., Joshi, B., Patel, P. (2017). Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004. Journal of Applied Biology, 5(1): 47-52.

Bouhraoua, D., Saida, A., Amin, L., Mohammed, B., Abdelhay, A. (2015). Beneficial effect of rhizobacteria inoculation on nutrition and mycorrhization of peanut grown in Morocco. Int.J. Curr. Microbiol. App.Sci 4(5): 748-755.

Bianco, M.D., Kepinski, S. (2011). Context, specificity, and self organization in auxin response. Cold Spring Harbor Perspectives in Biology 3(a001578): 1-20.

Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Virginia, L. (2009). Azospirillum brazilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology 45: 28 - 35.

Hafri, D.N., Endang, S., Arif, W. (2020). Pengaruh aplikasi plant growth promoting rhizobacteria terhadap pertumbuhan dan hasil tanaman bawang merah (Allium cepa L. Aggregatum group). Vegetalika 9(4): 512-524.

Halimursyadah, Reza, K.H., Syamsuddin. (2018). Pengaruh jenis rizobakteri pemacu pertumbuhan tanaman sebagai biofertilizer dan varietas terhadap pertumbuhan dan hasil tanaman kedelai (Glicine max L. Merill). Prosiding Forum Komunikasi Perguruan tinggi Pertanian Indonesia (FKPTPI) Universitas Syiah Kuala Banda Aceh: 259- 270.

Jos, M., Raaijmakers., Timothy C., Paulitz., Christian S., Claude A., dan Yvan M. 2009. The Rhizosphere: a playground and battlefield for soilborne pathogens and benefical microorganisms. Plant Soil 321: 341-361.

Kotake, T., Nakagawa, N., Takeda, K., Sakurai, N. (2000). Auxin induce elongation growth and expressions of cell wall bound exo and endo-β-glucanases in Barley coleoptiles. Plant Cell Physiol. 41(11): 1272-1278.

Kim, B., Park, A.R., Song, C.W., Song, H., Kim, J.C. (2022). Biological control efficacy and action mechanism of Klebsiella pneumoniae JCK-2201 producing Meso-2,3-Butanediol against tomato bacterial wilt. Front. Microbiol, 13(914589): 1-15.

Khalimi, K., Suprapta, D.N., Sudana, M., Wirya, G.A.S. (2017). Potential of indole acetic acid producing rhizobacteria to promote the growth and increase the yield of edamame, a vegetable soybean (Glycine max). Int. J. Pharma Bio Sci 8(3): 601-608.

Li, R., Guo, P., Baum, M., Grando, S., Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerances in Barley. Agricultural Sciences in China, 5(10): 751-757.

Liu, D., Chen, L., Zhu, X., Wang, Y., Xuan, Y., Liu, X., Chen, L., Duan, Y. (2018). Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth. Front. Microbiol, 9(1134): 1-13.

Marom, N., Rizal, Mochamat, B. (2017). Uji efektivitas waktu pemberian dan konsentrasi PGPR (Plant Growth Promoting Rhizobacteria) terhadap produksi dan mutu benih kacang tanah (Arachis hypogaea L.). Journal of Applied Agricultural Sciences 1(2): 174-184.

Patten, C.L., Glick, B.R. (2002). Role of Pseudomonas putida indol acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68 (8): 3795 - 3801.

Rechenmann, C.P. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology 2(a001446): 1-15.

Samosir, Osten M., Robert, G. Marpaung, Tasarambowo, L. (2019). Respon kacang tanah (Arachis hypogaea L.) terhadap pemberian unsur mikro. Jurnal Agrotekda 3(2): 74-83.

Santosa, B.A.S. (2010) Inovasi teknologi defatting: Peluang peningkatan diversifikasi produk kacang tanah dalam industri pertanian. Pengembangan Inovasi Pertanian, 3 (3): 199–211.

Sivasankari, B., Anandharaj, M. (2014). Isolation and molecular characterization of potential plant growth promoting Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3 from vermisources. Advances in Agriculture 2014: 1 -13.

Sharma, S., Jayant, K., Bhavanath, J. (2016). Halotolerant rhizobcteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology 7: 1-11.

Solichatun, Khalimi K, Sudarma IM. (2013). Isolasi dan identifikasi rizobakteri dari rizosfer kacang tanah dan uji efektivitasnya dalam mengendalikan penyakit layu fusarium pada tanaman tomat. E-Jurnal Agroekoteknologi Tropika 2 (4): 260-270.

Stigter, K.A., Plaxton, W.C. (2015). Molecular mechanisms of phosphorus metabolism and transport during leaf senescence. Plants, 4: 773-798.

Wang, M.L., Grusak, M.A., Chen, C.Y., Tonnis, B., Barkley, N.A., Evans, S., Pinnow, D., Davis, J., Phillips, R.D., Holbrook, C.C. & Pederson, G.A. (2016). Seed protein percentage and mineral concentration variability and their correlation with other seed quality traits in the U.S. peanut mini-core collection. Peanut Science, 43 (2): 119-125.

Wen, B., Li, C., Fu, X., Li, D., Li, L., Chen, X., Wu, H., Cui, X., Zhang, X., Shen, H., Zhang, W., Xiao, W., Gao, D. (2019). Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiology and Biochemistry, 142: 363-371.

Zhang, S., Reddy, M., and Kloepper, J. (2004). Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 262, 277–288. doi: 10.1023/B:PLSO.0000037048.26437.fa.




DOI: https://doi.org/10.15575/25053

Refbacks

  • There are currently no refbacks.


Creative Commons Licence

Jurnal Agro (J. Agro: ISSN 2407-7933) by http://journal.uinsgd.ac.id/index.php/ja/index is licensed under a Creative Commons Attribution 4.0 International License.