Representasi Deret ke dalam Bentuk Integral Lipat Dua
DOI:
https://doi.org/10.15575/kubik.v2i1.1473Keywords:
Deret Maclaurin, Integral Lipat Dua, Integral Euler, Identitas KombinatorialAbstract
Representasi suatu deret ke dalam bentuk lain merupakan salah satu kajian yang terdapat di dalam ilmu matematika. Salah satu representasi yang paling umum digunakan adalah representasi deret ke dalam bentuk integral, yang memungkinkan deret tersebut (khususnya deret tak terhingga) dapat ditentukan nilai atau jumlahnya. Banyak cara untuk merepresentasikan deret ke dalam bentuk integral, diantaranya dengan memanfaatkan ekspansi deret Maclaurin, fungsi khusus integral (fungsi gamma dan beta), serta teorema-teorema yang telah ada sebelumnya. Anthony Sofo [9] dalam kajiannya telah menemukan bentuk deret , yang kemudian akan dikaji bagaimana bentuk integral lipat dua dari deret tersebut di dalam paper ini beserta analisis kekonvergenannya.
References
Artin. E. The Gamma Function. Holt, Rinehart, dan Winston, New York, 1964.
Bartle. R.G, Sherbert. D.R. Introduction to Real Analysis: Third edition. John Wiley & Sons, USA, 2000.
Edwin. J, Purcell. Kalkulus dan Geometri Analitis: Edisi 5 Jilid 2. Erlangga, Jakarta, 1998.
Goddard. B, Rosen. Kenneth H. Elementary Number Theory and Its Applications, Pearson Addison-Wesley, Boston, 2005.
Kerami. D, Sitanggang. C. Kamus Matematika. Balai Pustaka, Jakarta, 2003.
Kohl. Karen T, H. Moll. Victor. Hypergeometric Function. Journal of Mathematical Sciences, 21: 43-54, Chile, 2011.
Krantz. S.C. The Gamma and Beta Function; Chapter 1. Vieweg, Braunschweig, Jerman, 1998.
Munir. Rinaldi. Matematika Diskrit. Informatika, Bandung, 2005.
Sofo. A. Double Integral Representation of Sums, Journal of Analysis, Vol. 8, 2009.
Sofo, A. General Properties Involving Reciprocals of Binomial Coefficients, Journal of Integer Sequences, Vol. 9, 2006.
Varberg. D, Purcell. Kalkulus: Edisi 9 Jilid 1. Erlangga, Jakarta, 2010.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â