Penerapan Extreme Learning Machine Dalam Meramalkan Harga Minyak Sawit Mentah
DOI:
https://doi.org/10.15575/kubik.v7i2.20460Keywords:
Crude Palm Oil, Extreme Learning Machine, Time Series SplitAbstract
The need for crude palm oil has increased due to the large demand for vegetable oils in various parts of the world. Beginning in March 2022, the price of crude palm oil set a record high which caused international cooking oil prices to soar, especially for Indonesia. This study aims to predict the price of crude palm oil with test parameters, namely hidden neurons and activation functions. The method used is Extreme Learning Machine (ELM). This method is a development of the artificial neural network (ANN) method which can overcome weaknesses in the learning speed process. There are several stages in this study: (1) pre-processing the data by normalizing the data and dividing the data using the time series split method, (2) analyzing the data using the ELM method by testing parameters, namely hidden neurons and activation functions, (3) analyzing the results of the best parameter trials, (4) calculating forecasting data using the best parameters that have been obtained, and (5) analyzing the forecasting results that have been obtained. This study uses daily data on the price of crude palm oil from April 1 2021 to April 14 2022 obtained from the Investing website. The results of the research that has been carried out obtained MAPE and RMSE values of 0.0173 and 0.0308 with the best parameters namely the number of hidden neurons of 5 and the binary sigmoid activation function. Based on the results obtained, it is hoped that it will make it easier for the government to determine the price of crude palm oil in the future.
References
[1] D. Haryadi and R. Mandala, “Prediksi Harga Minyak Kelapa Sawit Dalam Investasi Dengan Membandingkan Algoritma Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor,†IT Soc., vol. 4, no. 1, 2019, doi: 10.33021/itfs.v4i1.1181.
[2] D. I. Puspitasari, “Penerapan Data Mining Menggunakan Perbandingan Algoritma Greedy Dengan Algoritma Genetika Pada Prediksi Rentet Waktu Harga Crude Palm Oil,†Elinvo (Electronics, Informatics, Vocat. Educ., vol. 2, no. 1, pp. 21–26, 2017, doi: 10.21831/elinvo.v2i1.13033.
[3] S. Primadhyta, “Melihat Tren Lonjakan Harga CPO, Biang Kerok Minyak Goreng Selangit,†CNN Indonesia, 2022. https://www.cnnindonesia.com/ekonomi/20220317183716-92-772794/melihat-tren-lonjakan-harga-cpo-biang-kerok-minyak-goreng-selangit
[4] A. N. Alfiyatin, W. F. Mahmudy, C. F. Ananda, and Y. P. Anggodo, “Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia,†J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 2, p. 179, 2019, doi: 10.25126/jtiik.201962900.
[5] A. Giusti, A. W. Widodo, and S. Adinugroho, “Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine ( ELM ) di Kober Mie Setan Cabang Soekarno Hatta,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 8, pp. 2972–2978, 2018.
[6] D. T. A. Paramitha, I. Cholissodin, and C. Dewi, “Prediksi Rating Otomatis Berdasarkan Review Restoran pada Aplikasi Zomato dengan menggunakan Extreme Learning Machine (ELM),†J. PTIIK, vol. 3, no. 5, pp. 4687–4693, 2019, [Online]. Available: http://j-ptiik.ub.ac.id
[7] R. Faizal, B. D. Setiawan, and I. Cholissodin, “Prediksi Nilai Cryptocurrency Bitcoin menggunakan Algoritme Extreme Learning Machine (ELM),†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 9, pp. 4226–4233, 2019.
[8] M. Shariati et al., “A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement,†Eng. Comput., vol. 38, no. 1, pp. 757–779, 2022, doi: 10.1007/s00366-020-01081-0.
[9] I. Bahiuddin, S. A. Mazlan, M. I. Shapiai, F. Imaduddin, and Ubaidillah, “Study of Extreme Learning Machine Activation Functions for Magnetorheological Fluid Modelling,†Proceeding 2017 Int. Conf. Robot. Autom. Sci. ICORAS 2017, vol. 2018-March, pp. 1–5, 2018, doi: 10.1109/ICORAS.2017.8308053.
[10] A. Wanto, “Prediksi Produktivitas Jagung Di Indonesia Sebagai Upaya Antisipasi Impor Menggunakan Jaringan Saraf Tiruan Backpropagation,†SINTECH (Science Inf. Technol. J., vol. 2, no. 1, pp. 53–62, 2019, doi: 10.31598/sintechjournal.v2i1.355.
[11] H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,†Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.
[12] S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani, “Single and multi-sequence deep learning models for short and medium term electric load forecasting,†Energies, vol. 12, no. 1, 2019, doi: 10.3390/en12010149.
[13] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,†J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012002.
[14] F. I. Sanjaya and D. Heksaputra, “Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 163–174, 2020, doi: 10.35957/jatisi.v7i2.388.
Downloads
Published
Issue
Section
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â