Analisis Pola Konvergensi Transpor Kelembapan Udara di Indonesia Bagian Barat Menggunakan K-Means dengan Pembobotan Statistik dan Hierarchical Shape-Based Clustering
DOI:
https://doi.org/10.15575/kubik.v9i2.39753Keywords:
Convergence, DTW, hierarchical clustering, k-means, moisture, VIMTAbstract
References
A. I. Károly, R. Fullér, and P. Galambos, “Unsupervised Clustering for Deep Learning: A tutorial survey,†Acta Polytech. Hungarica, vol. 15, no. 8, 2018.
I. Nurandini and A. F. Huda, “Klastering Dokumen dengan Menambahkan Metadata Menggunakan Algoritma COATES,†KUBIK: Jurnal Publikasi Ilmiah Matematika, vol.2, no.2, 2017. Accessed: Nov. 25, 2024. [Online]. Available: https://journal.uinsgd.ac.id/index.php/kubik/article/view/1859
J. Singh and D. Singh, “A comprehensive review of clustering techniques in artificial intelligence for knowledge discovery: Taxonomy, challenges, applications and future prospects,†Adv. Eng. Informatics, vol. 62, p. 102799, Oct. 2024, doi: 10.1016/J.AEI.2024.102799.
D. Dedy and A. Cherid, “Data Mining Pengolahan Data Calon Pekerja Migran Indonesia (PMI) dengan Penerapan Metode Klustering K-Means dan Metode Klasifikasi K-Nearest Neighbor (KNN): Studi Kasus PT. SAM,†Format J. Ilm. Tek. Inform., vol. 9, no. 2, pp. 166–182, Jan. 2021, doi: 10.22441/FORMAT.2020.V9.I2.008.
P. Shetty and S. Singh, “Hierarchical Clustering: A Survey,†Int. J. Appl. Res., vol. 7, no. 4, pp. 178–181, Apr. 2021, doi: 10.22271/ALLRESEARCH.2021.V7.I4C.8484.
B. Khouider, “Moisture and Moist Thermodynamics,†Math. Planet Earth, pp. 23–39, 2019, doi: 10.1007/978-3-030-17775-1_2.
B. M. Smirnov, “Physical Aspects of Climate Change,†Global Energetics of the Atmosphere, pp. 261–291, 2021, doi: 10.1007/978-3-030-90008-3_10.
A. Vázquez-Patiño, L. Campozano, D. Ballari, M. Córdova, and E. Samaniego, “Virtual Control Volume Approach to the Study of Climate Causal Flows: Identification of Humidity and Wind Pathways of Influence on Rainfall in Ecuador,†Atmos. 2020, Vol. 11, Page 848, vol. 11, no. 8, p. 848, Aug. 2020, doi: 10.3390/ATMOS11080848.
N. Hamilton, “Atmospheric condition identification in multivariate data through a metric for total variation,†Atmos. Meas. Tech., vol. 13, no. 2, pp. 1019–1032, Mar. 2020, doi: 10.5194/AMT-13-1019-2020.
M. A. De Oliveira, F. A. Varone, C. W. Fraisse, R. M. Araújo, and G. G. H. Cavalheiro, “Clustering of meteorological data to improve agricultural decisions: a case study with SIMAGRO-RS,†ACM Int. Conf. Proceeding Ser., May 2024, doi: 10.1145/3658271.3658288.
B. N. Ruchjana, H. Khoirunnisa, I. Irianingsih, and B. Suhandi, “Perbandingan Penerapan Metode Agglomerative dengan Metode K-Means pada Data Curah Hujan di Wilayah Bogor,†KUBIK: Jurnal Publikasi Ilmiah Matematika, vol.5 no.2, 2020. Accessed: Nov. 25, 2024. [Online]. Available: https://journal.uinsgd.ac.id/index.php/kubik/article/view/7581
B. Prihasto, D. Darmansyah, D. P. Yuda, F. M. Alwafi, H. N. Ekawati, and Y. P. Sari, “Comparative Analysis of K-Means and K-Medoids Clustering Methods on Weather Data of Denpasar City,†J. Pendidik. Multimed., vol. 5, no. 2, pp. 91–114, Dec. 2023, doi: 10.17509/EDSENCE.V5I2.65925.
R. Bhardwaj and V. Duhoon, “Study and Analysis of Time Series of Weather Data of Classification and Clustering Techniques,†Adv. Intell. Syst. Comput., vol. 1165, pp. 257–270, 2021, doi: 10.1007/978-981-15-5113-0_19.
Y. Barrera et al., “Clustering high dimensional meteorological scenarios: Results and performance index,†Int. J. Approx. Reason., vol. 139, pp. 1–11, Dec. 2021, doi: 10.1016/J.IJAR.2021.08.007.
K. Chansaengkrachang, A. Luadsong, and N. Aschariyaphotha, “Vertically Integrated Moisture Flux Convergence over Southeast Asia and Its Relation to Rainfall over Thailand,†Pertanika J. Sci. Technol, vol. 26, no. 1, pp. 235–246, 2018, Accessed: Oct. 09, 2024. [Online]. Available: https://rbkm.kmutt.ac.th/xmlui//handle/123456789/1665
“GRIB Parameter Database: Param 213.,†European Centre for Medium-Range Weather Forecasts.(n.d.).Accessed:Sep.30,2024.[Online].Available: https://codes.ecmwf.int/grib/param-db/213.
G. Pernigotto, A. Walsh, A. Gasparella, and J. L. M. Hensen, “Clustering of European Climates and Representative Climate Identification for Building Energy Simulation Analysesâ€, doi: 10.26868/25222708.2019.210938.
D. Sathiaraj, X. Huang, and J. Chen, “Predicting climate types for the Continental United States using unsupervised clustering techniques,†Environmetrics, vol. 30, no. 4, p. e2524, Jun. 2019, doi: 10.1002/ENV.2524.
D. M. Straus, “Clustering Techniques in Climate Analysis,†Oxford Res. Encycl. Clim. Sci., Feb. 2018, doi: 10.1093/ACREFORE/9780190228620.013.711.
T. Kurihana et al., “Identifying Climate Patterns Using Clustering Autoencoder Techniques,†Artif. Intell. Earth Syst., vol. 3, no. 3, Aug. 2024, doi: 10.1175/AIES-D-23-0035.1.
Badan Pusat Statistik , “Statistik Indonesia 2023 (No. 03200.2303),†2023. Accessed: Sep. 30, 2024.[Online].Available: https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html
H. Li, “On-line and dynamic time warping for time series data mining,†Int. J. Mach. Learn. Cybern., vol. 6, no. 1, pp. 145–153, Feb. 2015, doi: 10.1007/S13042-014-0254-0/METRICS.
S. Demir, “Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients,†Int. J. Assess. Tools Educ., vol. 2022, no. 2, pp. 397–409, 2022, doi: 10.21449/ijate.1101295.
H. B. Zhou and J. T. Gao, “Automatic Method for Determining Cluster Number Based on Silhouette Coefficient,†Adv. Mater. Res., vol. 951, pp. 227–230, 2014, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.951.227.
G. Zhu, X. Li, S. Zhang, X. Xu, and B. Zhang, “An improved method for k-means clustering based on internal validity indexes and inter-cluster variance,†Int. J. Comput. Sci. Eng., vol. 25, no. 3, p. 253, 2022, doi: 10.1504/IJCSE.2022.123112.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â