Enhancing Visual Intelligence Through a Triplet Representation-Based Virtual Laboratory on Chemical Equilibrium Shifts

Authors

  • Dini Damayanti Department of Chemistry Education, Faculty of Mathematic and Natural Science, Universitas Negeri Surabaya, Jl. Ketintang Wiyata No.62, Surabaya, 60231, Indonesia
  • Kusumawati Dwiningsih Department of Chemistry Education, Faculty of Mathematic and Natural Science, Universitas Negeri Surabaya, Jl. Ketintang Wiyata No.62, Surabaya, 60231, Indonesia
  • Maharani Agustina Arivi Graduate Institute of Science Education, College of Science, National Taiwan Normal University, Taipei City, 116059, Taiwan, Province of China

DOI:

https://doi.org/10.15575/jtk.v10i2.50089

Keywords:

equilibrium shifts, media feasibility, triplet representation, virtual laboratory, visual intelligence

Abstract

This research examined the validity, practicality, and effectiveness of virtual laboratory based on triplet representation to enhance students' visual intelligence in chemical equilibrium shifts. Using the Research & Development (R&D) method with the Analysis, Design, Development, Implementation, and Evaluation (ADDIE) model, this study involved 31 students from MAN 2 Gresik. The instruments used included validation questionnaire, student response questionnaire, and pre-posttest sheets. The results showed the media achieved very good validity with a mode of four, very practical with practicality test reached 94.08% and effective to enhance visual intelligence in chemical equilibrium shifts with significance value of 0.000 (< 0.05) on Wilcoxon Signed Rank and medium-high category N-Gain. This virtual laboratory based on triplet representation is proven to be valid, practical, and effective in enhancing students' visual intelligence on chemical equilibrium shift. This media can be an innovative solution for digital learning and a cost-effective alternative for schools that lack laboratory facilities.

References

Alhashem, F., & Alfailakawi, A. (2023). Technology-enhanced learning through virtual laboratories in chemistry education. Contemporary Educational Technology, 15(4). https://doi.org/10.30935/cedtech/13739

Cruz, J. P. Dela, Lejano, M. V., Martin, J., Marquez, S. J. R., Fernandez, A. R. S., & Bautista, R. G. (2025). Virtual laboratories in enhancing experimental skills and scientific understanding among high school learners. American Journal of Educational Research, 13(6), 338–343. https://doi.org/10.12691/education-13-6-6

Deriba, F. G., Saqr, M., & Tukiainen, M. (2024). Assessment of accessibility in virtual laboratories: A systematic review. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1351711

Dzikro, A. Z. T., & Dwiningsih, K. (2021). Kelayakan media pembelajaran berbasis laboratorium virtual pada submateri kimia unsur periode ketiga. Chemistry Education Practice, 4(2). https://doi.org/10.29303/cep.v4i2.2389

Egista, E., Taufik, M., Zuhdi, M., & Kosim, K. (2022). Pengembangan perangkat pembelajaran fisika pada materi getaran harmonis menggunakan model discovery learning untuk meningkatkan penguasaan konsep peserta didik. Jurnal Ilmiah Profesi Pendidikan, 7(1), 41–46. https://doi.org/10.29303/jipp.v7i1.397

Fitria, R., & Sebastian, R. (2024). Trends in research on representation in chemistry learning: A systematic review. International Journal of Instruction, 9(2), 65–78. https://doi.org/10.29333/aje.2024.926a

Garma, R., Sioud, D., Binous, H., & Bellagi, A. (2024). Introduction to the modeling of complex chemical reaction equilibrium using gPROMS® and GAMS®. Computer Applications in Engineering Education, 32(3). https://doi.org/10.1002/cae.22714

Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307–330. https://doi.org/10.1039/C8RP00301G

Herrington, D. G., Hilborn, S. M., Sielaff, E. N., & Sweeder, R. D. (2022). ChemSims: Using simulations and screencasts to help students develop particle-level understanding of equilibrium in an online environment before and during COVID. Chemistry Education Research and Practice, 23(3), 644–661. https://doi.org/10.1039/D2RP00063F

Hu-Au, E. (2024). Learning abstract chemistry concepts with virtual reality: An experimental study using a VR chemistry lab and molecule simulation. Electronics, 13(16). https://doi.org/10.3390/electronics13163197

Isaloka, I., & Dwiningsih, K. (2020). The development of 3D interactive multimedia oriented spatial visually on polar and nonpolar covalent bonding materials. Jurnal Tadris Kimiya, 5(2), 153–165. https://doi.org/10.15575/jtk.v5i2.8688

Keiner, L., & Graulich, N. (2021). Beyond the beaker: Students’ use of a scaffold to connect observations with the particle level in the organic chemistry laboratory. Chemistry Education Research and Practice, 22(1), 146–163. https://doi.org/10.1039/D0RP00206B

Khusna, A. U., Janah, S. N., Al Halwi, A., & Dwiningsih, K. (2024). Development of a periodic elementary system module for boarding school students in improving visual intelligence. Journal of Chemistry Education Research, 8(1), 17–22. https://doi.org/10.26740/jcer.v8n1.p17-22

Lestari, L., Aprilia, L., Fortuna, N., Cahyo, R. N., Fitriani, S., Mulyana, Y., & Kusumaningtyas, P. (2023). Laboratorium virtual untuk pembelajaran kimia di era digital: A review. Jambura Journal of Educational Chemistry, 5(1), 1–10. https://doi.org/10.34312/jjec.v5i1.15008

Lin, C.-Y., & Wu, H.-K. (2021). Effects of different ways of using visualizations on high school students’ electrochemistry conceptual understanding and motivation towards chemistry learning. Chemistry Education Research and Practice, 22(3), 786–801. https://doi.org/10.1039/D0RP00308E

Maharma, H. M. A. Al. (2021). Analysis of the activities used in English textbooks regarding the multiple intelligences theory in Jordan. Educational Research and Reviews, 16(10), 400–406. https://doi.org/10.5897/ERR2021.4178

Murni, H. P., Azhar, M., Ellizar, E., Nizar, U. K., & Guspatni, G. (2022). Three levels of chemical representation-integrated and structured inquiry-based reaction rate module: Its effect on students’ mental models. Journal of Turkish Science Education, 19(3), 758–772. https://doi.org/10.36681/tused.2022.148

Novita, D., Suyono, S., & Suyatno, S. (2023). Analysis of student conceptions and conceptual changes about chemical equilibrium materials in concentration factors. International Journal of Recent Educational Research, 4(6), 782–794. https://doi.org/10.46245/ijorer.v4i6.414

Phajan, T., Cojorn, K., & Dien, T. N. N. (2025). Exploring the representational competence of eleventh-grade students on the rates of chemical reactions. Jurnal Pendidikan IPA Indonesia, 14(2), 351–363. https://doi.org/10.15294/jpii.v14i2.24509

Popova, M., & Jones, T. (2021). Chemistry instructors’ intentions toward developing, teaching, and assessing student representational competence skills. Chemistry Education Research and Practice, 22(3), 733–748. https://doi.org/10.1039/D0RP00329H

Ranggu, N. P., Nurlaili, & Labulan, P. (2023). The development of four-tier diagnostic test for identifying misconception in chemical equilibrium of students pharmacy vocational school. Educational Studies: Conference Series, 3(1). https://doi.org/10.30872/escs.v3i1.2597

Riduwan. (2016). Skala pengukuran variabel-variabel penelitian. Alfabeta.

Ripsam, M., & Nerdel, C. (2024). Augmented reality for chemistry education to promote the use of chemical terminology in teacher training. Frontiers in Psychology, 15, 1–23. https://doi.org/10.3389/fpsyg.2024.1392529

Rokhim, D., Asrori, M., & Widarti, H. (2020). Pengembangan virtual laboratory pada praktikum pemisahan kimia terintegrasi telepon pintar. Jurnal Kajian Teknologi Pendidikan, 3(2), 216–226. https://doi.org/10.17977/um038v3i22020p216

Rosmansyah, F. W., & Mutiaz, I. R. (2024). Perancangan virtual lab simulasi pembelajaran anatomi telinga manusia untuk mahasiswa kedokteran. Ars: Jurnal Seni Rupa dan Desain, 27(2), 103–110. https://doi.org/10.24821/ars.v27i2.8050

Rossie, K., Dwiningsih, K., Setiyanti, A., & Setiawan, M. W. (2025). Development of interactive video-assisted worksheets: Enhancing students’ visual intelligence. Jurnal Eduscience, 12(2), 437–449. https://doi.org/10.36987/jes.v12i2.6955

Sari, S., Nur Hamidah, S., & Farida, I. (2024). The development of chemical representations-oriented virtual laboratory for teaching electrolysis in chemistry classes. KnE Social Sciences. https://doi.org/10.18502/kss.v9i8.15565

Silva, A. J. P. da, & Arroio, A. (2022). The role of time in the use of visualization in chemical education: Pre-service teacher practices. Journal of Turkish Science Education, 19(3), 786–807. https://doi.org/10.36681/tused.2022.150

Sirianansopa, K. (2024). Evaluating students’ learning achievements using the formative assessment technique: A retrospective study. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-024-06347-5

Spatioti, A. G., Kazanidis, I., & Pange, J. (2022). A comparative study of the ADDIE instructional design model in distance education. Information, 13(9), 402. https://doi.org/10.3390/info13090402

Sudirman, Lembang, S. T., Kondolayuk, M. L., et al. (2023). Statistika pendidikan. Media Sains Indonesia.

Sugiyono. (2013). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.

Szabo, D.-A. (2022). Adapting the ADDIE instructional design model in online education. Studia Psychologica, 67, 126–140. https://doi.org/10.24193/subbpsyped.2022.1.08

Takowa, Y., Tangio, J. S., Thayban, T., Kunusa, W. R., & Mohamad, E. (2025). Faktor penyebab kesulitan siswa SMA memahami kesetimbangan kimia: Literature review. Jurnal Pendidikan Kimia, Fisika dan Biologi, 1(3), 109–123. https://doi.org/10.61132/jupenkifb.v1i3.290

Talanquer, V. (2022). The complexity of reasoning about and with chemical representations. JACS Au, 2(12), 2658–2669. https://doi.org/10.1021/jacsau.2c00498

Timmer, M. C. J., Steendijk, P., Arend, S. M., & Versteeg, M. (2020). Making a lecture stick: The effect of spaced instruction on knowledge retention in medical education. Medical Science Educator, 30(3), 1211–1219. https://doi.org/10.1007/s40670-020-00995-0

Widarti, H. R., Rokhim, D. A., Muchson, M., Budiasih, E., Sutrisno, Pratama, R. W., & Hakim, M. I. (2021). Developing integrated triplet multi-representation virtual laboratory in analytic chemical materials. International Journal of Interactive Mobile Technologies, 15(8), 119–135. https://doi.org/10.3991/ijim.v15i08.21573

Wooten, J. O., & Cuevas, J. A. (2024). The effects of dual coding theory on social studies vocabulary and comprehension in elementary education. International Journal on Social and Education Sciences, 6(4), 673–691. https://doi.org/10.46328/ijonses.696

Wu, X., Siripala, W., & Namtubtim, N. (2025). Impact of interactive multimedia on digital literacy among Chinese grade-3 students. Journal of Education and Learning, 14(5), 135. https://doi.org/10.5539/jel.v14n5p135

Yahya, S. F., & Lutfi, A. (2023). Multimedia interaktif berbasis articulate storyline untuk melatih kecerdasan visual pada materi ikatan kimia. Pendipa: Journal of Science Education, 7(1), 106–116. https://doi.org/10.33369/pendipa.7.1.106-116

Zielinski, G., & Gawda, P. (2024). Analysis of the use of sample size and effect size calculations in a temporomandibular disorders randomised controlled trial: Short narrative review. Journal of Personalized Medicine, 14(6). https://doi.org/10.3390/jpm14060655

Downloads

Published

2025-12-25

How to Cite

Damayanti, D., Dwiningsih, K., & Arivi, M. A. (2025). Enhancing Visual Intelligence Through a Triplet Representation-Based Virtual Laboratory on Chemical Equilibrium Shifts. JTK (Jurnal Tadris Kimiya), 10(2), 194–208. https://doi.org/10.15575/jtk.v10i2.50089

Issue

Section

Articles

Citation Check