Batch Adsorption of Pb(II) Batch Using Humic Acid from Goat Dung


Malikhatul Hidayah(1*), Kustomo Kustomo(2), Anfi'na Ilma Yunita(3)

(1) Department of hemistry Study, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia
(2) Department of hemistry Study, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia
(3) Department of hemistry Study, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia
(*) Corresponding Author

Abstract


This research focuses on the batch adsorption process, then looks for kinetic models and Freundlich model adsorption isotherms. In the process of adsorbing the heavy metal Pb, humic acid from goat dung has the potential to be employed as a promising adsorbent since it offers benefits, including being economical, being able to work accurately, quickly, sensitively, selectively, and helping to maintain public health. Parameters for testing humic acid from goat dung as an adsorbent for heavy metal Pb were determined by optimizing pH test variations, contact time, and concentration of Pb solution. Humic acid from goat manure could work optimally to absorb heavy metal Pb at pH 5, contact time 30 minutes, and metal concentration Pb 20 ppm with an adsorption capacity of 19.784 mg/g. Data modeling revealed that the adsorption process followed a pseudo-second-order kinetics model with the acquisition value of R² = 0.9595 and the Freundlich isotherm with the acquisition value of R² = 0.9166.

Keywords


Humic acid; goat dung; adsorption; heavy metal Pb.

Full Text:

PDF

References


REFERENSI

[1] T. Kokab et al., “A reliable sensing platform based on tribenzamide for sensitive and selective detection of Pb (II) ions,” Inorg. Chem. Commun., vol. 138, no. January, p. 109261, 2022, doi: 10.1016/j.inoche.2022.109261.

[2] V. Masindi and K. L. Muedi, “Environmental Contamination by Heavy Metals,” Heavy Met., 2018, doi: 10.5772/intechopen.76082.

[3] A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of Heavy Metals from Industrial Wastewaters: A Review,” ChemBioEng Rev., vol. 4, no. 1, pp. 37–59, 2017, doi: 10.1002/cben.201600010.

[4] K. M. Cecil et al., “Decreased brain volume in adults with childhood lead exposure,” PLoS Med., vol. 5, no. 5, pp. 0741–0749, 2008, doi: 10.1371/journal.pmed.0050112.

[5] L. D. White et al., “New and evolving concepts in the neurotoxicology of lead,” Toxicol. Appl. Pharmacol., vol. 225, no. 1, pp. 1–27, 2007, doi: 10.1016/j.taap.2007.08.001.

[6] J. N. Cumings, Fourth Edition, Guidelines for drinking-water quality, WHO Chronicle 38, ISBN 978-9., vol. 55. 2011.

[7] A. N. Khan and H. K. Bagla, “Batch Adsorption and Desorption Investigations of Cs(I) and Sr(II) from Simulated Reactor Waste by Humic Acid,” J. Trace Elem. Miner., vol. 1, no. June, p. 100005, 2022, doi: 10.1016/j.jtemin.2022.100005.

[8] N. H. Solangi, J. Kumar, S. A. Mazari, S. Ahmed, N. Fatima, and N. M. Mubarak, “Development of fruit waste derived bio-adsorbents for wastewater treatment: A review,” J. Hazard. Mater., vol. 416, no. April, p. 125848, 2021, doi: 10.1016/j.jhazmat.2021.125848.

[9] A. M. Tadini, A. C. C. Bernardi, D. M. B. P. Milori, P. P. A. Oliveira, J. R. M. Pezzopane, and L. Martin-Neto, “Spectroscopic characteristics of humic acids extracted from soils under different integrated agricultural production systems in tropical regions,” Geoderma Reg., vol. 28, no. November 2021, 2022, doi: 10.1016/j.geodrs.2021.e00476.

[10] B. A. G. De Melo, F. L. Motta, and M. H. A. Santana, “Humic acids: Structural properties and multiple functionalities for novel technological developments,” Mater. Sci. Eng. C, vol. 62, pp. 967–974, 2016, doi: 10.1016/j.msec.2015.12.001.

[11] K. M. Spark, J. D. Wells, and B. B. Johnson, “The interaction of a humic acid with heavy metals,” Aust. J. Soil Res., vol. 35, no. 1, pp. 89–101, 1997, doi: 10.1071/S96008.

[12] B. Han et al., “Modification of naturally abundant resources for remediation of potentially toxic elements: A review,” J. Hazard. Mater., vol. 421, no. July 2021, p. 126755, 2022, doi: 10.1016/j.jhazmat.2021.126755.

[13] K. Wan, Y. Xiao, J. Fan, Z. Miao, G. Wang, and S. Xue, “Preparation of high-capacity macroporous adsorbent using lignite-derived humic acid and its multifunctional binding chemistry for heavy metals in wastewater,” J. Clean. Prod., vol. 363, no. December 2021, p. 132498, 2022, doi: 10.1016/j.jclepro.2022.132498.

[14] K. A. Ani, C. M. Agu, C. Esonye, and M. C. Menkiti, “Investigations on the characterizations, optimization and effectiveness of goat manure compost in crude oil biodegradation,” Curr. Res. Green Sustain. Chem., vol. 4, no. May, p. 100120, 2021, doi: 10.1016/j.crgsc.2021.100120.

[15] S. Luo et al., “Accelerated atrazine degradation and altered metabolic pathways in goat manure assisted soil bioremediation,” Ecotoxicol. Environ. Saf., vol. 221, p. 112432, 2021, doi: 10.1016/j.ecoenv.2021.112432.

[16] Atik Rahmawati, “Telah dilakukan penelitian tentang isolasi dan kara- kterisasi asam humat hasil isolasi tanah gambut yang be- marinda , Kalimantan Timur . Isolasi asam humat dari tanah gambut menggunakan metode ekstraksi alkali , pemurnian dan penentuan kand- ungan gugus,” J. Phenom., vol. 2, no. 1, pp. 117–136, 2011.

[17] N. Nurhasni, H. Hendrawati, and N. Saniyyah, “Sekam Padi untuk Menyerap Ion Logam Tembaga dan Timbal dalam Air Limbah,” J. Kim. Val., vol. 4, no. 1, 2014, doi: 10.15408/jkv.v4i1.1074.

[18] I. Yantyana, V. Amalia, and R. Fitriyani, “Adsorpsi Ion Logam Timbal(II) Menggunakan Mikrokapsul Ca-Alginat,” al-Kimiya, vol. 5, no. 1, pp. 17–26, 2018, doi: 10.15575/ak.v5i1.3721.

[19] Y. B. Yuliyati and C. L. Natanael, “Isolasi Karakterisasi T Asam Humat dan Penentuan Daya Serapnya Terhadap Ion Logam Pb(II) Cu(II) dan Fe(II),” Al-Kimia, vol. 4, no. 1, pp. 43–53, 2016, doi: 10.24252/al-kimia.v4i1.1455.

[20] F. L. Setyawan, Darjito, and M. M. Khunur, “Pengaruh pH dan lama Kontak pada Adsorpsi Ca2+ Menggunakan Adsorben Kitin Terfosforilasi dari Limbah Cangkang Bekicot,” Kim. Student J., vol. 1, no. 2, pp. 201–207, 2013.

[21] Kustomo and S. J. Santosa, “Studi Kinetika dan Adsorpsi Zat Warna Kation (Metilen Biru) dan Anion (Metil Orange) pada Magnetit Terlapis Asam Humat,” J. Jejaring Mat. dan Sains, vol. 1, no. 2, pp. 64–69, 2019, doi: 10.36873/jjms.v1i2.212.

[22] N. Nafsiyah, A. Shofiyani, and I. Syahbanu, “Studi Kinetika dan Isoterm Adsorpsi Fe(III) pada Bentonit Teraktivasi Asam Sulfat,” J. Kim. dan Kemasan, vol. 6, no. 1, pp. 57–63, 2017.

[23] I. Syauqiah, M. Amalia, and H. A. Kartini, “Analisis Variasi Waktu dan Kecepatan Pengadukan Pada Proses Adsorpsi,” Info Tek., vol. 12, no. 1, pp. 11–20, 2011.

[24] C. S. T. Araújo, I. L. S. Almeida, H. C. Rezende, S. M. L. O. Marcionilio, J. J. L. Léon, and T. N. de Matos, “Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms,” Microchem. J., vol. 137, pp. 348–354, 2018, doi: 10.1016/j.microc.2017.11.009.

[25] R. Ezzati, “Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption,” Chem. Eng. J., vol. 392, no. December 2019, p. 123705, 2020, doi: 10.1016/j.cej.2019.123705.




DOI: https://doi.org/10.15575/ak.v9i2.19735

Copyright (c) 2023 Malikhatul Hidayah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.