Application of LC-MS/MS Coupled with Various Digestion Methods for the Identification of Porcine Gelatin Markers in Confectionery Matrices


Kifayati Rosiyanti Dewi(1), Feri Kusnandar(2*), Nancy Dewi Yuliana(3), Maya Ismayati(4), Nissa Nurfajrin Solihat(5), Handy Riantana(6), Heryani Heryani(7)

(1) IPB University & National Research and Innovation Agency (BRIN), Indonesia
(2) IPB University & Halal Science Center IPB University, Indonesia
(3) IPB University & Halal Science Center IPB University, Indonesia
(4) National Research and Innovation Agency (BRIN), Indonesia
(5) National Research and Innovation Agency (BRIN), Indonesia
(6) National Research and Innovation Agency (BRIN) & Khon Kaen University, Thailand
(7) The Assessment Institute for Foods, Drugs and Cosmetics, the Indonesian Council of Ulama (LPPOM MUI), Indonesia
(*) Corresponding Author

Abstract


Gelatin is a high-risk ingredient in terms of its halal status. Liquid chromatography combined with mass spectrometry (LC-MS/MS) was used to identify the source of gelatin based on marker peptides and proved to deliver higher reliability than other methods. However, the digestion method is essential before LC-MS/MS analysis. This research evaluated different digestion methods against selected porcine gelatin marker peptides and assessed LC-MS/MS sensitivity through adulteration experiments in various mixed matrices. The study involved three digestion methods (conventional, microwave, and ultrasound) before LC-MS/MS analysis to determine the most effective method for detecting marker peptide targets from porcine gelatin. The appropriate method was applied to isolate porcine gelatin peptides in the matrices of bovine gelatin and confectionery products (lozenges, marshmallows, and soft candy) at concentrations of 0.01, 0.1, and 1% (w/w). Relative detection limit values were determined. The results showed that conventional digestion treatment yielded a higher marker peptide detection rate than microwave and ultrasound digestion. Meanwhile, the detection limit of porcine gelatin in bovine gelatin ranged from 0.09 to 0.89%, depending on the marker peptide used, and could be significantly detected at a concentration of 1% in the confectionery product. The marker peptide TGQPGAVGPAGIR exhibited the highest stability, as it was detectable at the lowest concentration across all mixed matrices. The LC-MS/MS method has been proven to afford sensitive results and has the potential to serve as an alternative for detection of halal status.

Keywords


confectionery; gelatin; LC-MS/MS; porcine

Full Text:

PDF

References


Ahmed, M. A., Al-Kahtani, H. A., Jaswir, I., AbuTarboush, H., & Ismail, E. A. (2020). Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi Journal of Biological Sciences, 27(6), 1596–1601. https://doi.org/10.1016/j.sjbs.2020.03.022

Ali, M. E., Al Amin, M., Hamid, S. B. A., Hossain, M. A. M., & Mustafa, S. (2015). Lab-on-a-chip-based PCR-RFLP assay for the confirmed detection of short-length feline DNA in food. Food Additives & Contaminants: Part A, 32(9), 1373–1383. https://doi.org/10.1080/19440049.2015.1075068

Arizona, K., Laswati, D. T., & Rukmi, K. S. A. (2021). Studi pembuatan marshmallow dengan variasi konsentrasi gelatin dan sukrosa. Agrotech : Jurnal Ilmiah Teknologi Pertanian, 3(2), 11–17. https://doi.org/10.37631/agrotech.v3i2.279

Atefi, M., Bagheri, V., Mahmoudzadeh, M., Mazaheri, R., & Fard, N. (2021). Gelatin: Overview of identification methods. Journal of Human, Health and Halal Metrics, 2(2), 25–34. https://doi.org/10.30502/jhhhm.2021.318985.1044

Cai, S., Jiang, M., Zhao, K., Huang, X., Fei, F., Cao, B., Cui, X., Duan, J., Zhao, M., Han, S., & Liu, R. (2021). A quantitative strategy of ultrasound-assisted digestion combined UPLC-MS/MS for rapid identifying species-specific peptide markers in the application of food gelatin authentication. LWT, 147, 111590. https://doi.org/10.1016/j.lwt.2021.111590

Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O., & Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chemistry, 190, 1109–1115. https://doi.org/10.1016/J.FOODCHEM.2015.06.065

Charity, M. L. (2017). Jaminan produk halal di Indonesia. Jurnal Legislasi Indonesia, 14(1), 99–108. https://doi.org/10.54629/jli.v14i1.77

Cheng, X., Wei, F., Xiao, X., Zhao, Y., Shi, Y., Liu, W., Zhang, P., Ma, S., Tian, S., & Lin, R. (2012). Identification of five gelatins by ultra performance liquid chromatography/time-of- flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. Journal of Pharmaceutical and Biomedical Analysis, 62, 191–195. https://doi.org/10.1016/j.jpba.2011.12.024

Evard, H., Kruve, A., & Leito, I. (2016a). Tutorial on estimating the limit of detection using LC-MS analysis, Part I: theoretical review. Analytica Chimica Acta, 942, 23–39. https://doi.org/10.1016/j.aca.2016.08.043

Evard, H., Kruve, A., & Leito, I. (2016b). Tutorial on estimating the limit of detection using LC-MS analysis, Part II: practical aspects. Analytica Chimica Acta, 942, 40–49. https://doi.org/10.1016/j.aca.2016.08.042

Flaudrops, C., Armstrong, N., Raoult, D., & Chabrière, E. (2015). Determination of the animal origin of meat and gelatin by MALDI-TOF-MS. Journal of Food Composition and Analysis, 41, 104–112. https://doi.org/10.1016/j.jfca.2015.02.009

Gelatin Manufacturers Institute of America. (2019). GMIA Handbook. In Gelatin handbook. GMIA.

Gianazza, E., & Banfi, C. (2018). Post-translational quantitation by SRM/MRM: application in cardiology. Expert Review of Proteomics, 15(6), 477–502. https://doi.org/10.1080/14789450.2018.1484283

Graboski, A. M., Galvagni, E., Manzoli, A., Shimizu, F. M., Zakrzevski, C., Weschenfelder, T. A., Steffens, J., & Steffens, C. (2018). Lab-made electronic-nose with polyaniline sensor array used in classification of different aromas in gummy candies. Food Research International, 113, 309–315. https://doi.org/10.1016/j.foodres.2018.07.011

Grundy, H. H., Reece, P., Buckley, M., Solazzo, C. M., Dowle, A. A., Ashford, D., Charlton, A. J., Wadsley, M. K., & Collins, M. J. (2016). A mass spectrometry method for the determination of the species of origin of gelatine in foods and pharmaceutical products. Food Chemistry, 190, 276–284. https://doi.org/10.1016/J.FOODCHEM.2015.05.054

Guo, Z., Cheng, J., Sun, H., & Sun, W. (2017). A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses. Rapid Commun Mass Spectrom., 31(16), 1353–1362. https://doi.org/10.1002/rcm.7913

Hassan, N., Ahmad, T., & Zain, N. M. (2018). Chemical and chemometric methods for halal authentication of gelatin: An overview. Journal of Food Science, 83(12), 2903–2911. https://doi.org/10.1111/1750-3841.14370

Hermanto, S., Saputra, F. R., & . Z. (2015). Aplikasi metode SDS-PAGE (Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis) untuk mengidentifikasi sumber asal gelatin pada kapsul keras. Jurnal Kimia VALENSI, 1(1), 26–32. https://doi.org/10.15408/jkv.v0i0.3150

Hidaka, S., & Liu, S. Y. (2003). Effects of gelatins on calcium phosphate precipitation: a possible application for distinguishing bovine bone gelatin from porcine skin gelatin. Journal of Food Composition and Analysis, 16(4), 477–483. https://doi.org/10.1016/S0889-1575(02)00174-6

Huang, Y., Li, T., Deng, G., Guo, S., & Zaman, F. (2020). Recent advances in animal origin identification of gelatin-based products using liquid chromatography-mass spectrometry methods: A mini review. Reviews in Analytical Chemistry, 39(1), 260–271. https://doi.org/10.1515/revac-2020-0121

Juan, H.-F., Chang, S.-C., Huang, H.-C., & Chen, S.-T. (2005). A new application of microwave technology to proteomics. PROTEOMICS, 5(4), 840–842. https://doi.org/10.1002/pmic.200401056

Jumhawan, U., Xing, J., & Zhaoqi, Z. (2019). Targeted proteomics approach for sensitive detection of bovine and porcine gelatins in food, pharmaceutical capsules and personal care products. In In Application News No. AD-0179. Shimadzu.

Kleinnijenhuis, A. J., van Holthoon, F. L., & Herregods, G. (2018). Validation and theoretical justification of an LC-MS method for the animal species specific detection of gelatin. Food Chemistry, 243, 461–467. https://doi.org/10.1016/j.foodchem.2017.09.104

Lill, J. R., Ingle, E. S., Liu, P. S., Pham, V., & Sandoval, W. N. (2007). Microwave-assisted proteomics. Mass Spectrometry Reviews, 26(5), 657–671. https://doi.org/10.1002/mas.20140

Lin, S.-S., Wu, C.-H., Sun, M.-C., Sun, C.-M., & Ho, Y.-P. (2005). Microwave-assisted enzyme-catalyzed reactions in various solvent systems. Journal of the American Society for Mass Spectrometry, 16(4), 581–588. https://doi.org/10.1016/j.jasms.2005.01.012

Montowska, M., & Spychaj, A. (2018). Quantification of species-specific meat proteins in cooked and smoked sausages using mass spectrometry. Journal of Food Science and Technology, 55(12), 4984–4993. https://doi.org/10.1007/s13197-018-3437-y

Ng, P. C., Ruslan, N. A. S. A., Chin, L. X., Ahmad, M., Hanifah, S. A., Abdullah, Z., & Khor, S. M. (2021). Recent advances in halal food authentication: Challenges and strategies. J. Food. Sci., 87(1), 8–35. https://doi.org/10.1111/1750-3841.15998

Pan, X.-D., Chen, J., Chen, Q., Huang, B.-F., & Han, J.-L. (2018). Authentication of pork in meat mixtures using PRM mass spectrometry of myosin peptides. RSC Advances, 8, 11157–11162. https://doi.org/10.1039/c8ra00926k

Panuwet, P., Hunter Jr, R. E., D’Souza, P. E., Chen, X., Radford, S. A., Cohen, J. R., Marder, M. El., Kartavenka, K., Ryan, P. B., & Barr, D. B. (2016). Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Crit. Rev. Anal. Chem, 46(2), 93–105. https://doi.org/10.1080/10408347.2014.980775

Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y.-H., Bartner, P. L., Weber, P. C., & Bose, A. K. (2009). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science, 11(11), 2676–2687. https://doi.org/10.1110/ps.0213702

Prandi, B., Varani, M., Faccini, A., Lambertini, F., Suman, M., Leporati, A., Tedeschi, T., & Sforza, S. (2019). Species specific marker peptides for meat authenticity assesment: A multispecies quantitative approach applied to Bolognese sauce. Food Control, 97, 15–24. https://doi.org/10.1016/j.foodcont.2018.10.016

Qi, K., Liu, T., Yang, Y., Zhang, J., Yin, J., Ding, X., Qin, W., & Yang, Y. (2019). A rapid immobilized trypsin digestion combined with liquid chromatography – Tandem mass spectrometry for the detection of milk allergens in baked food. Food Control, 102, 179–187. https://doi.org/10.1016/j.foodcont.2019.03.017

Rakhmanova, A., Khan, Z. A., Sharif, R., & Lü, X. (2018). Meeting the requirements of halal gelatin: A mini review. MOJ Food Processing & Technology, 6(6), 477–482. https://doi.org/10.15406/mojfpt.2018.06.00209

Rivera-Albarran, M. E., & Ray, S. J. (2020). A novel combined microstrip resonator/nanospray ionization source for microwave-assisted trypsin digestion of proteinss. Journal of the American Society for Mass Spectrometry, 31(8), 1684–1696. https://doi.org/10.1021/jasms.0c00115

Sarah, S. A., Faradalila, W. N., Salwani, M. S., Amin, I., Karsani, S. A., & Sazili, A. Q. (2016). LC-QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chemistry, 199, 157–164. https://doi.org/10.1016/j.foodchem.2015.11.121

Sha, X.-M., Wang, G.-Y., Li, X., Zhang, L.-Z., & Tu, Z.-C. (2020). Identification and quantification of gelatin by a high-resolution mass spectrometry-based label-free method. Food Hydrocolloids, 101, 105476. https://doi.org/10.1016/j.foodhyd.2019.105476

Shabani, H., Mehdizadeh, M., Mousavi, S. M., Dezfouli, E. A., Solgi, T., Khodaverdi, M., Rabiei, M., Rastegar, H., & Alebouyeh, M. (2015). Halal authenticity of gelatin using species-specific PCR. Food Chemistry, 184, 203–206. https://doi.org/10.1016/j.foodchem.2015.02.140

Shin, S., Yang, H.-J., Kim, J., & Kim, J. (2011). Effect of temperature on ultrasound-assisted tryptic protein digestion. Analytical Biochemistry, 414(1), 125–130. https://doi.org/10.1016/j.ab.2011.02.026

Šlechtová, T., Gilar, M., Kalíková, K., & Tesařová, E. (2015). Insight into trypsin miscleavage: Comparison of kinetic constants of problematic peptide sequences. Analytical Chemistry, 87(15), 7636–7643. https://doi.org/10.1021/acs.analchem.5b00866

State of the Global Islamic Economy. (2021). State of the Global Islamic Economy Report 2020/21. Dubai Capital of the Islamic Economy & DinarStandard. https://www.salaamgateway.com/specialcoverage/SGIE20-21

Sulaiman, T. S., Aryani, D., & Murti, Y. B. (2015). Pembuatan chewable lozenges ekstrak daun legundi (Vitex trifolia L.) dengan variasi proporsi basis gliserin-gelatin. Majalah Obat Tradisional, 20(2), 103-109. https://doi.org/10.22146/tradmedj.8079

Sun, W., Gao, S., Wang, L., Chen, Y., Wu, S., Wang, X., Zheng, D., & Gao, Y. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Molecular and Cellular Proteomics, 5(4), 769–776. https://doi.org/10.1074/mcp.T500022-MCP200

Temple, A., Yen, T.-Y., & Gronert, S. (2006). Identification of specific protein carbonylation sites in model oxidations of human serum albumin. Journal of the American Society for Mass Spectrometry, 17(8), 1172–1180. https://doi.org/10.1016/j.jasms.2006.04.030

Uddin, S. M. K., Hossain, M. A. M., Sagadevan, S., Al Amin, M., & Johan, M. R. (2021). Halal and Kosher gelatin: Applications as well as detection approaches with challenges and prospects. Food Bioscience, 44, 101422. https://doi.org/10.1016/j.fbio.2021.101422

Wells, G., Prest, H., & Russ IV, C. W. (2011). Signal, noise and detection limits in mass spectrometry.

Xie, F., Liu, T., Qian, W.-J., Petyuk, V. A., & Smith, R. D. (2011). Liquid chromatography-mass spectrometry-based quantitative proteomics. Journal of Biological Chemistry, 286(29), 25443–35449. https://doi.org/10.1074/jbc.R110.199703

Yang, C. T., Ghosh, D., & Beaudry, F. (2018). Detection of gelatin adulteration using bio-informatics, proteomics and high-resolution mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 35(4), 599–608. https://doi.org/10.1080/19440049.2017.1416680

Yilmaz, M. T., Kesmen, Z., Baykal, B., Sagdic, O., Kacar, O., Yetim, H., & Baykal, A. T. (2013). A novel method to differentiate bovine and porcine gelatins in food products: NanoUPLC-ESI-Q-TOF-MSE based data independent acquisition technique to detect marker peptides in gelatin. Food Chemistry, 141(3), 2450–2458. https://doi.org/10.1016/j.foodchem.2013.05.096

Zhou, W., Yang, S., & Wang, P. G. (2017). Matrix effects and application of matrix effect factor. Bioanalysis, 9(23), 1839–1844. https://doi.org/10.4155/bio-2017-0214




DOI: https://doi.org/10.15575/ijhar.v5i2.21191

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Halal Research Indexed By:

          


Published By:

Halal Center

UIN Sunan Gunung Djati

Gedung Solahuddin Sanusi (Laboratorium Terpadu)

Jl. A.H. Nasution No. 105, Cibiru, Bandung, West Java 40614 - Indonesia 

Creative Commons License
Indonesian Journal of Halal Research by Halal Center UIN Sunan Gunung Djati Bandung is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uinsgd.ac.id/index.php/ijhar.