ONE-DIMENSIONAL MOTION EXPERIMENTS AND DATA PROCESSING USING THE RASPBERRY PI AND PYTHON


soni prayogi(1*), Fitria Silviana(2), Saminan Saminan(3)

(1) Teknik Elektro Universitas Pertamina, Indonesia
(2) Medan State University, Indonesia
(3) Syiah Kuala University, Indonesia
(*) Corresponding Author

Abstract


In this study, we try to propose a simple electronic computational experiment of one-dimensional motion, which combines physics and computer science. Our experimental setup is based on the Raspberry Pi3 model B with the Raspbian operating system. The ultrasonic proximity sensor is the HC-SR04, which can be powered using the +5V DC output of the Raspberry Pi. An ultrasonic proximity sensor is used to obtain the position of a selected target along a linear path with a Raspberry Pi and simple Python code. Another simple script is proposed to calculate velocity and acceleration and for a graphical presentation of the results. Our results show that motion can be qualitatively and quantitatively defined, and the experiment is suitable for undergraduate or younger students. Several methods are also available for calibrating various setups, depending on the level of accuracy required.

Keywords


Raspberry Pi, Python, Experiment, One-dimensional motion

Full Text:

PDF

References


Ana, A. J., Suarti, S., Rasyid, R., & Mariani, S. (2022). The effect of the contextual teaching and learning (CTL) learning model based on simulation media on students' motivation and learning outcomes in physics learning. Journal of Teaching and Learning Physics, 7(2), 88–96.

Bolton, W. (2009). Chapter 1 - Programmable Logic Controllers. In W. Bolton (Ed.), Programmable Logic Controllers (Fifth Edition) (pp. 1–19). Boston: Newnes.

Bujang, M. A., Khee, H. Y., & Yee, L. K. (2022). A Step-By-Step Guide to Questionnaire Validation Research. Zenodo.

Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25). Singapore: Springer.

Dziuban, C., Graham, C. R., Moskal, P. D., Norberg, A., & Sicilia, N. (2018). Blended learning: the new normal and emerging technologies. International Journal of Educational Technology in Higher Education, 15(1), 3.

Ewert, U., Jaenisch, G.-R., Osterloh, K., Zscherpel, U., Bathias, C., Hentschel, M., Erhard, A., Goebbels, J., Hanselka, H., Nuffer, J., & Daum, W. (2006). Performance Control and Condition Monitoring. In H. Czichos, T. Saito, & L. Smith (Eds.), Springer Handbook of Materials Measurement Methods (pp. 831–912). Berlin, Heidelberg: Springer.

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022). The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study. Cogent Engineering, 9(1), 2110726. doi: 10.1080/23311916.2022.2110726

Handhika, J., Cari, C., Sunarno, W., Suparmi, A., & Kurniadi, E. (2018). The influence of project-based learning on the student conception about kinematics and critical thinking skills. Journal of Physics: Conference Series, 1013(1), 012028. doi: 10.1088/1742-6596/1013/1/012028

Herlina, K., Wicaksono, B. A., Andra, D., & Nyeneng, I. D. P. (2022). Development of a Simple and Low-Cost Light Diffraction Props for Teaching and Learning Optics during Covid-19 Outbreak. Jurnal Pendidikan MIPA, 23(2), 437–447.

Ikbal, M. S., & Hasanah, A. U. (2022). Science process skills analysis of students in basic electronics practice. Journal of Teaching and Learning Physics, 7(2), 118–125. doi: 10.15575/jotalp.v7i2.16878

Ismail, N. A., Wahid, N. A., Yusoff, A. S. M., Wahab, N. A., Rahim, B. H. A., Majid, N. A., Din, N. M. N., Ariffin, R. M., Adnan, W. I. W., & Zakaria R. (2020). The Challenges of Industrial Revolution (IR) 4.0 towards the Teacher’s Self-Efficacy. Journal of Physics: Conference Series, 1529(4), 042062.

Mariskha, C., Sari, I. M., Tedja, I., & Novia, H. (2022). E-modules based on multi-representations on newton’s law materials. Journal of Teaching and Learning Physics, 7(1), 1–10. doi: 10.15575/jotalp.v7i1.10999

Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed). Harlow: Prentice Hall/Pearson.

Nichols Hess, A. K., & Greer, K. (2016). Designing for Engagement: Using the ADDIE Model to Integrate High-Impact Practices into an Online Information Literacy Course. Communications in Information Literacy, 10(2), 264–282.

Ozcan, D., & Uzunboylu, H. (2015). Trainning of special education teachers about curriculum development-Izobrazba Edukacijskih Rehabilitatora O Razvoju Kurikuluma. Andragoški glasnik: Glasilo Hrvatskog andragoškog društva, 19(1-2 (34)), 23-37.

Pathade, M., & Yeole, G. (2014). Programmable Logic Controllers (PLC) and its Programming. International Journal of Engineering Research & Technology, 3(1).

Prayogi, S., Asih, R., Priyanto, B., Baqiya, M. A., Naradipa, M. A., Cahyono, Y., Darminto, & Rusydi, A. (2022). Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content. Scientific Reports, 12(1), 21497. doi: 10.1038/s41598-022-24713-5

Prayogi, S., Cahyono, Y., & Darminto, D. (2022). Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy. Optical and Quantum Electronics, 54(11), 732. doi: 10.1007/s11082-022-04044-5

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618. doi: 10.1007/s10854-021-05477-6

Prima, E. C., Oktaviani, T. D., & Sholihin, H. (2018). STEM learning on electricity using arduino-phet based experiment to improve 8th grade students’ STEM literacy. Journal of Physics: Conference Series, 1013(1), 012030. doi: 10.1088/1742-6596/1013/1/012030

Qureshi, H. A., & Ünlü, Z. (2020). Beyond the Paradigm Conflicts: A Four-Step Coding Instrument for Grounded Theory. International Journal of Qualitative Methods, 19, 1609406920928188. doi: 10.1177/1609406920928188

Ragustini, R., Zakwandi, R., Gumilar, T., & Putera, R. F. (2022). The learning design to improve the learning outcomes on the electrical circuit topic. Journal of Teaching and Learning Physics, 7(2), 97–106. doi: 10.15575/jotalp.v7i2.17773

Samiha, Y. T., Handayani, T., Razaq, A., Fithriyah, M., Fitri, A., & Anshari, M. (2022). Implementation of Education 4.0 as Sustainable Decisions for a Sustainable Development. 2022 International Conference on Decision Aid Sciences and Applications (DASA), 846–850.

Saphet, P., Tong-on, A., & Thepnurat, M. (2017). One dimensional two-body collisions experiment based on LabVIEW interface with Arduino. Journal of Physics: Conference Series, 901(1), 012115.

Serhane, A., Raad, M., Raad, R., & Susilo, W. (2019). Programmable logic controllers-based systems (PLC-BS): vulnerabilities and threats. SN Applied Sciences, 1(8), 924.

Sugiyono, S. (2010). Metode Penelitian Kuantitatif dan Kualitatif dan R&D. ALFABETA Bandung.

Zainuddin, Z., Syukri, M., Prayogi, S., & Luthfia, S. (2022). Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 10(2), 231–239. doi: 10.24815/jpsi.v10i2.23130




DOI: https://doi.org/10.15575/jotalp.v8i1.22889

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Journal of Teaching and Learning Physics indexed by: