Optimal Control of Vaccination for Dengue Fever in SIR Model


Nilwan Andiraja(1*), Sri Basriati(2), Elfira Safitri(3), Rahmadeni Rahmadeni(4), Alfitra Martino(5)

(1) UIN Sultan Syarif Kasim Riau,  
(2) ,  
(3) ,  
(4) ,  
(5) ,  
(*) Corresponding Author

Abstract


According to data from The Indonesian ministry of health, many of individuals suffere dengue fever until may 2023 in Indonesia. To reduce its cases, in this article, a single of control strategy of vaccination for infected human by dengue fever has been proposed. To obtain the optimal control, the SIR model has been modificated with single control and the new objective function has been made before the Pontryagin minimum principle is used in this article. According to the differential equation in the model of the dengue fever and the objective function, we made the Hamiltonian equation. Then, from it, the state equation, costate equation, and stationary condition has been made from the Hamiltonian equation so we obtained the optimal control in vaccination. In the end of this article, we did the numerical simulation using the sweep forward-backward method. Through numerical simulation, we find that the control succeed to reduce the infected human by dengue fever and also increase human recovery from this desease. Futhermore, the control of vaccination for infected human should be implemented not only in this mathematical model but also into real life to decrease the dengue fever case. 


Keywords


control, dengue, fordward-backward, sweep, vaccination

Full Text:

PDF

References


N. Anggriani, A. Supriatna, B. Subartini, and R. Wulantini, “Kontrol Optimum pada Model Epidemik SIR dengan Pengaruh Vaksinasi dan Faktor Imigrasi,” Jurnal Matematika Integratif ISSN, vol. 1412, p. 6184, 2015.

E. Nuryati, “Analisis Spasial Kejadian Demam Berdarah Dengue Di Kota Bandar Lampung Tahun 2006-2008,” Jurnal Ilmiah Kesehatan, vol. 1, no. 2, 2012.

I. A. Dania, “Gambaran penyakit dan vektor demam berdarah dengue (DBD),” Warta Dharmawangsa, no. 48, 2016.

H. Castellini and L. Romanelli, “On the propagation of social epidemics in social networks under SIR model,” arXiv preprint nlin/0703053, 2007.

H. Ihsan, S. Side, and M. Pagga, “Pemodelan Matematika SEIRS Pada Penyebaran Penyakit Malaria di Kabupaten Mimika,” Journal of Mathematics, Computations, and Statistics, vol. 4, no. 1, pp. 21–29, 2021.

L. Nurjanah, F. Ilahi, and D. Suandi, “Analisis Kestabilan Global dengan Menggunakan Fungsi Lyapunov pada Model Dinamik Epidemik SIR,” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 3, no. 1, pp. 68–76, 2018.

D. Suandi, “Analisis Dinamik pada Model Penyebaran Penyakit Campak dengan Pengaruh Vaksin Permanen,” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 2, no. 2, pp. 1–10, 2019.

F. Ilahi and M. S. Khumaeroh, “Analisis Sensitivitas dan Kestabilan Global Model Pengendalian Tuberkulosis dengan Vaksinasi, Latensi dan Perawatan Infeksi,” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 6, no. 2, pp. 85–97, 2021.

K. Pareallo and S. Side, “Kontrol Optimal pada Model Epidemik SIR Penyakit Demam Berdarah,” Indonesian Journal of Fundamental Sciences Vol, vol. 4, no. 2, 2018.

S. L. Ross, Differential equations. Wiley & son, 2007.

F. L. Lewis and V. L. Syrmos, Optimal Control Theory”, Penerbit John Wiley & Sons, Inc, Canada, 1995. Canada: John Wiley & Sons, 1995.

S. P. Sethi, Optimal Control Theory : Applications to Manageemnt Science and Economics. New York: Springer, 2020.

L. D. Purnamasari and Y. Mariatul Kiftiah, “Kontrol Optimal Penyebaran Penyakit Gonore dengan Menggunakan Prinsif Minimum Pontryagina,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 8, no. 4, 2019.

D. E. Mahmudah and M. Z. Naf’an, “Kontrol Optimasi Model Epidemik Host-Vektor dengan Simulasi Menggunakan Forward-Backward Sweep,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 8, no. 1, pp. 1–19, 2014.

G. R. Rose, “Numerical methods for solving optimal control problems,” Trace: Tennessee Research and Creative Exchange, 2015.

S. Lenhart and J. T. Workman, Optimal control applied to biological models. CRC press, 2007.

C. N. Hananti and K. Mu’tamar, “Analisis Model SIR Penyebaran Demam Berdarah Dengue Menggunakan Kriteria Routh-Hurwitz,” Jurnal Universitas Riau, vol. 1, pp. 1-13, 2017.




DOI: https://doi.org/10.15575/kubik.v7i2.21397

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nilwan Andiraja, Sri Basriati, Elfira Safitri, Rahmadeni Rahmadeni, A Martino

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.