Model Tingkat Kemiskinan di Kabupaten/Kota Provinsi Riau: Menggunakan Regresi Data Panel

Rahmadeni Rahmadeni, Nurjannah Nurjannah

Abstract


The purpose of this study is to model the poverty rate in the districts/cities of Riau province in 2015-2019. In this study, the panel data regression method was used to model the poverty level in the districts/cities of Riau province. There are three approaches to predict panel data regression, those are the common effect model (CEM), the  fixed effect model (FEM), and the random effect model (REM). The test results show that the problem of poverty levels in the districts/cities of Riau province in 2015-2019 is more accurately modeled with the fixed effect model (FEM) approach. From the FEM model formed, the effect of the poverty rate in the district/city of Riau province is caused by the average length of schooling of 12.136671 and economic growth of 0.304306 with the coefficient of determination (Adjusted R-square) reaching 98.62%.

 


Keywords


Fixed effect model, panel data regression, poverty level

References


M. P. Todaro dan S. C. Smith, Pembangunan Ekonomi. Erlangga, 2006.

bps.go.id, “Badan Pusat Statistik Kota Pekanbaru,” bps.go.id, 2020. https://pekanbarukota.bps.go.id/pressrelease/2020/07/15/603/profil-kemiskinan-di-provinsi-riau--maret-2020.html (accessed Mar. 09, 2021).

D. Gujarati, Dasar-dasar Ekonometrika. Erlangga, 2007.

I. Makuta and B. O’Hare, “Quality of governance, public spending on health and health status in Sub Saharan Africa: A panel data regression analysis,” BMC Public Health, vol. 15, no. 1, pp. 1–11, 2015, doi: 10.1186/s12889-015-2287-z.

N. Fajriyah et al., “Pemodelan Faktor-Faktor yang Mempengaruhi Kemiskinan Kabupaten / Kota di Jawa Timur Menggunakan Regresi Data Panel,” J. Sains dan Seni, vol. 5, no. 1, 2016.

E. Widodo, E. Suriani, I. Putri, and G. Evi, “Analisis Regresi Panel pada Kasus Kemiskinan di Indonesia,” Pros. Semin. Nas. Mat., vol. 2, pp. 710–717, 2019.

A. Indra Setyaningsih and T. K. Wasik, “Model regresi data panel untuk mengetahui faktor yang mempengaruhi tingkat kemiskinan di pulau madura 1,2,” J. Gaussian, vol. 9, no. 2018, pp. 355–363, 2020.

C. Simar, N. Gusriani, I. Irianingsih, “Pengelompokan Kabupaten/Kota di Jawa Barat Tahun 2018 Berdasarkan Indikator Kemiskinan dengan Polythetic Divisive Method,” J. Kubik: Jurnal Publikasi Ilmiah Matematika, vol 5, no. 1, pp. 35–42, 2020.

D. F. Durrah, R. Cahyandari, A. S. Awalluddin, “Model Regresi Data Panel Terbaik untuk Faktor Penentu Laba Neto Perusahaan Asuransi Umum Syariah di Indonesia,” J. Kubik: Jurnal Publikasi Ilmiah Matematika, vol 5, no. 1, pp. 28–34, 2020.

T. A. Prasanti, T. Wuryandari, and A. Rusgiyono, “Aplikasi Regresi Data Panel Untuk Pemodelan Tingkat Pengangguran Terbuka Kabupaten/Kota Di Provinsi Jawa Tengah,” None, vol. 4, no. 3, pp. 687–696, 2015.

D. Satria, “Analisis Regresi: Model Data Panel,” Diassatria.com, 2020. https://www.diassatria.com/analisis-regresi-model-data-panel/ (accessed Mar. 10, 2021).

A. Widarjono, EKONOMETRIKA: Teori dan Aplikasi untuk Ekonomi dan Bisnis. 2005.

A. T. Basuki and N. Prawoto, “Analisis Regresi dalam Penelitian Ekonomi & Bisnis,” pp. 1–239, 2015.

W. H. Greene, “A Gamma-distributed stochastic frontier model.pdf,” vol. 46, pp. 141–163, 1990.

K. S. Kasmiarno, “Analisis Pengaruh Indikator Ekonomi dan Kinerja Perbankan Syariah Terhadap Penyerapan Tenaga Kerja Pada Perbaikan Syariah Di Indonesia Tahun 2088-2014,” pp. 14–26, 2016.




DOI: https://doi.org/10.15575/kubik.v6i2.13598

Refbacks

  • There are currently no refbacks.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by