Penerapan Model Geographically Weighted Regression pada Data Penetapan Warisan Budaya Takbenda di Indonesia

Authors

  • Firdaus Ryan Pratomo Padjadjaran University
  • Dianne Amor Kusuma Padjadjaran University
  • Budi Nurani Ruchjana Padjadjaran University

DOI:

https://doi.org/10.15575/kubik.v9i1.33492

Keywords:

Keywords, Geographically Weighted Regression, Intangible Cultural Heritage, Spatial Heterogeneity

Abstract

Intangible Cultural Heritage (WBTb) determination data in Indonesia is a cultural investment that needs to be preserved. One of the efforts to preserve WBTb is to determine the cultural preservation factors that influence the WBTb determination data in Indonesia. These factors include Percentage of Population Watching Performances/Art Exhibitions (PPWP), Percentage of Population Using Regional Languages (PPURL), and Percentage of Households Using Traditional Products (PHUTP). However, the different cultural wealth in each province results in spatial heterogeneity, resulting in differences in the determination of cultural preservation factors in each province. This determination can be done with the Geographically Weighted Regression (GWR) model. This study aims to apply the GWR model with Fix Gaussian Kernel, Fix Bisquare Kernel, and Fix Tricube Kernel weighting to determine cultural preservation factors in WBTb determination data in Indonesia so that it can be known what cultural preservation factors are most influential in each region. The research findings show the existence of spatial heterogeneity only in the category of WBTb designation data for Performing Arts (PA) and Oral Expression Tradition (OET), as well as different GWR models in each province that reflect differences in cultural preservation factors. Evaluation with the coefficient of determination shows that the GWR model with the Fix Gaussian Kernel weighting function is the best model for the PA category. 

Author Biographies

Firdaus Ryan Pratomo, Padjadjaran University

 

Dianne Amor Kusuma, Padjadjaran University

 

Budi Nurani Ruchjana, Padjadjaran University

 

References

Kemdikbud, “Warisan Budaya Takbenda Indonesiaâ€, https://warisanbudaya.Kemdikbud.go.id/?tentang&active=pengertian%20dan%20domain%20warisan%20budaya%20takbenda (diakses 28 Mei 2023).

BPS, “Statistik Sosial Budaya 2021â€, https://www.bps.go.id/id/publication/2022/06/30/6a2dabc16d556ab9d075f918/statistik-sosial-budaya-2021.html (diakses 28 Mei 2023).

M. Jaya, B. Ruchjana, B. Tantular, Z. Hanif, dan Y. Andriyana, “Simulation and Application of The Spatial Autoregressive Geographically Weighted Regression Model (SAR-GWR)â€, ARPN Journal of Engineering and Applied Sciences, 13:377-385, 2018

A. Tumanggor dan E. Simamora, “Pemodelan Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Manusia Di Sumatera Utara Menggunakan Regresi Spasialâ€, Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2): 01-16, 2023

A.S. Fotheringham, C. Brunsdon, dan M. Charlton, “Geographically Weighted Regression: The Analysis of Spatially Varying Relationshipsâ€, John Wiley & Sons, New Jersey, 2002, pp. 27-213

N. Sunusi, dan A. Subarkah, “Geographically Weighted Regression With Different Kernels: Application To Model Povertyâ€, Indonesian Journal of Applied Research (IJAR), 4(1):27-41, 2023

S.H. Daulay dan E. Simamora, “Pemodelan Faktor-Faktor Penyebab Kemiskinan Di Provinsi Sumatera Utara Menggunakan Metode Geographically Weighted Regression (GWR)â€, Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(1):47-60, 2023

A. Tsanawafa, D.A. Kusuma, dan B.N. Ruchjana, “Model Spatial Autoregressive Exogenous pada Data Penetapan Warisan Budaya Takbenda di Pulau Jawaâ€, Jurnal Matematika Integratif, 19(2):137-147, 2023

T. Salsabil, D.A. Kusuma, dan B.N. Ruchjana, “Penerapan Perangkat Lunak RStudio untuk Penaksiran Parameter Model Spatial Autoregressiveâ€, KUBIK: Jurnal Publikasi Ilmiah Matematika, 8(1):50-64, 2023

Simplemaps, “Indonesia Cities Databaseâ€, https://simplemaps.com/data/id-cities (diakses 28 Mei 2023) (diakses 28 Mei 2023).

A. Rahman, N. Gusriani, dan D.A. Kusuma, “Pemetaan Zonasi Resiko Covid-19 di Provinsi Jawa Barat Menggunakan Model Geographically Weighted Ordinal Logistic Regression (GWOLR)â€, Teorema: Teori dan Riset Matematika, 7(1):193-204, 2022

C. Chasco, J. Le Gallo, dan F.A. López, “A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madridâ€, Regional Science and Urban Economics, 68:226-238, 2018

L. Anselin, “Spatial Econometrics: Methods and Modelsâ€, Springer Dordrecht, New York, 1988, p. 70

E. Maria, E. Budiman, dan M. Taruk, “Measure distance locating nearest public facilities using Haversine and Euclidean Methodsâ€, Journal of Physics: Conference Series, 1450(1):012080, 2020

U. Safitri dan L. Amaliana, “Model Geographically Weighted Regression dengan Fungsi Pembobot Adaptive dan Fixed Kernel pada Kasus Kematian Ibu di Jawa Timurâ€, Jurnal Statistika dan Aplikasinya, 5(2):208-220, 2021

D.F. Durrah, R. Cahyandari, dan A.S. Awalluddin, “Model regresi data panel terbaik untuk faktor penentu laba neto perusahaan asuransi umum Syariah di Indonesiaâ€, KUBIK: Jurnal Publikasi Ilmiah Matematika, 5(1):28-34, 2020

A. Andriyati dan E. Rohaeti, “Analisis Faktor-Faktor yang Mempengaruhi Ketahanan Hidup Pasien Tuberculosis dengan Model Regresi Cox (Studi kasus : Rumah Sakit Paru Bogor)â€, KUBIK: Jurnal Publikasi Ilmiah Matematika 4(1): 140-148, 2019

Y.D. Pratiwi, S. Mariani, dan P. Hendikawati, “Pemodelan Regresi Spasial Menggunakan Geographically Weighted Regression Dengan Pembobot Fixed Kernel Gaussian Dan Adaptive Kernel Bisquareâ€, Unnes Journal of Mathematics, 8(2): 32-41, 2019

R. Hadiantini dan A.N. Retnowati, “Analisis Faktor yang Mempengaruhi Risiko Gagal Bayar Debitur pada Lembaga Keuangan Mikro Menggunakan Regresi Logistik dan Ant Colony Optimization (ACO)â€, KUBIK: Jurnal Publikasi Ilmiah Matematika, 7(1):49-60, 2022

Published

2024-05-25