Model Regresi Data Panel Terbaik untuk Faktor Penentu Laba Neto Perusahaan Asuransi Umum Syariah di Indonesia
DOI:
https://doi.org/10.15575/kubik.v5i1.8488Keywords:
Data Panel, Random Effect Model (REM), Biaya Klaim, Hasil Underwriting, Pendapatan Premi Neto.Abstract
Data panel merupakan gabungan antara data cross section dengan data time series. Model regresi data panel terbaik pada penelitian ini adalah Random Effect Model (REM). Faktor penentu laba neto perusahaan asuransi umum syariah di Indonesia menunjukkan bahwa biaya klaim, hasil underwriting, dan pendapatan premi neto mempengaruhi laba neto perusahaan asuransi umum syariah di Indonesia selama periode pengamatan tahun 2014-2017.
Downloads
Published
2020-10-05
How to Cite
Durrah, D. F., Cahyandari, R., & Awalluddin, A. S. (2020). Model Regresi Data Panel Terbaik untuk Faktor Penentu Laba Neto Perusahaan Asuransi Umum Syariah di Indonesia. KUBIK: Jurnal Publikasi Ilmiah Matematika, 5(1), 28–34. https://doi.org/10.15575/kubik.v5i1.8488
Issue
Section
Articles
Citation Check
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â
Â