Panel Data Analysis of Two Level Mixed Linear Models for Factors Affecting The Health Index in West Java


Asep Solih Awalluddin(1*), Mia Siti Khumaeroh(2), H. Amalia(3), Inge Wahyuni(4)

(1) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(2) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(3) Department of Mathematics, UIN Sunan Gunung Djati Bandung, Indonesia
(4) Regional Research and Development Agency, West Java Province, Indonesia
(*) Corresponding Author

Abstract


The purpose of this study is to construct a multilevel mixed linear model for panel data by estimating parameters and testing the hypothesis of fit of the model with case studies in determining the prediction of the health index for the marginal and conditional models on the factors that influence the prediction of the health index in West Java for 2016 data. -2021, with time (year) and region (district and city) variables as factors involved in the model. Multilevel mixed linear model is the development of a mixed linear model that can be used to analyze correlated panel data. Parameter estimation uses the Maximum Likelihood (ML) method to estimate fixed effect parameters and Restricted Maximum Likelihood (REML) to estimate covariance parameters. The results obtained by the health index prediction model in West Java, both for the marginal and conditional prediction models and goodness of fit model.


Keywords


Panel Data, Mixed Linear Models, Maximum Likelihood (ML), Restricted Maximum Likelihood (REML), Health Data

Full Text:

PDF

References


E. W. Frees, "Longitudinal and Panel Data Analysis and Applications" In The Social Sciences. New York: Cambridge University Press, 2004.

C. Angelini, "Regression analysis", Vol. 1–3. Elsevier Ltd., 2018.

N. Pandis, “Cross-sectional studies,”Am. J. Orthod. Dentofac. Orthops., vol. 146, no. 1, pp. 127–129, 2014.

S. Searle, G. Casella, and C. McCulloh,"Variance Components", New Jersey: A John Wiley & Sons, Inc., 2006.

N. H. Pusponegoro, R. N. Rachmawati, K. A. Notodiputro and B. Sartono, “Linear Mixed Model for Analyzing Longitudinal Data: A Simulation Study of Children Growth Differences”, Procedia Comput. sci., Vol. 116, pp. 284–291, 2017.

S. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Sixth Edit. London: Katey Birtcher, 2021.

H. Liu, Y. Zheng, and J. Shen, “Goodness-of-fit measures of R2 for repeated measures mixed effect models,”J. Appl. Stats., Vol. 35, No. 10, pp. 1081–1092, 2008.

A. C. Rencher and G. B. Schaalje, "Linear Models in Statistics", Second Edition, Vol. 84, No. 500, New Jersey: John Wiley & Sons, Inc., 2000.

F. N. Gumedze and T. T. Dunne, “Parameter estimation and inference in the linear mixed model”, Linear Algebra Appl., Vol. 435, No. 8, pp. 1920–1944, 2011.

X. Liu, "Methods and applications of longitudinal data analysis", Elsevier Inc., 2015.

J. Hilbe and A. Robinson, "Methods of Statistical Model Estimation", Boca Raton: CRC Press, 2013.

B. West, K. Welch, and A. Gałecki, "Linear Mixed Models A Practical Guide Using Statistical Software", Second Edition, vol. 53, no. 9, Boca Raton: CRC Press, 2015.

B. West, K. Welch, and A. Gałecki, "Linear Mixed Models A Practical Guide Using Statistical Software", Second. Boca Raton: CRC Press, 2015.

J. W. Wu, "The Quasi-Likelihood Estimation In Regression", Ann. Inst. Statist. Math., Vol. 48, No. 2, pp. 283-294, 1996.

P. Widyaningsih, DRS. Saputro and A.N. Putri, "Fisher Scoring Method for Parameter Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Mode", Journal of Physics: Conf. Series, Vol. 855, No.1, p. 012060 2017.

B. P. Carlin and T. A. Louis, "Bayes and Empirical Bayes Methods for Data Analysis, Second Edition", Boca Raton: CRC Press, 2000.

N. Saputri, B. N. Ruchjana and E. S. Hasbullah, "Penerapan Model Regresi Data Panel pada Faktor Fundamental dan Teknikal Harga Saham Sektor Industri Real Estate", Kubik: Jurnal Publikasi Ilmiah Matematika, Vol. 5, No. 1, pp. 10-19, 2020.

R. Rahmadeni, and N. Nurjannah, "Model Tingkat Kemiskinan di Kabupaten/Kota Provinsi Riau: Menggunakan Regresi Data Panel", KUBIK: Jurnal Publikasi Ilmiah Matematika, Vol.6, No. 2, pp. 98-109, 2021.

D. F. Durrah, R. Cahyandari and A. S. Awalluddin, "Model regresi data panel terbaik untuk faktor penentu laba neto perusahaan asuransi umum Syariah di Indonesia", KUBIK: Jurnal Publikasi Ilmiah Matematika, Vol.5, No. 1, p. 27-34, 2020.




DOI: https://doi.org/10.15575/kubik.v9i1.31369

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Asep Solih Awalluddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by:

SINTA DOAJ Dimensions Google Scholar Garuda Moraref DOI Crossref

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.