Analisis Sensitivitas dan Kestabilan Global Model Pengendalian Tuberkulosis dengan Vaksinasi, Latensi dan Perawatan Infeksi

Della Isna Amatillah, Fadilah Ilahi, Mia Siti Khumaeroh

Abstract


Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis which attacks the lungs. Tuberculosis or TB is one of the diseases with the highest mortality rate in the world. In this article, we will examine the sensitivity and global stability analysis of the tuberculosis control model with vaccination, latency and infection treatment. In this model, the population is divided into 5 compartments, namely the immunized population (M), susceptible population (S), infected population with latent TB (L), infected population with active TB (I) and the recovered population (R).  The equilibrium point, local and global stability, basic reproduction number R0 is analyzed along with sensitivity analysis to see the effect of parameter values on the basic reproduction number R0. From the analysis and simulation result, it is found that there are two parameters that have the most influence on the spread of tuberculosis, namely the recovery rate of latent TB and the infection rate of active TB. If the recovery rate of latent TB is higher than the infection rate of active TB infection, then the disease will gradually disappear from the population, whereas if the recovery rate of latent TB is lower than the infection rate of active TB, the disease will spread within the population.


Keywords


Tuberculosis, Tuberculosis control, Vaccination, Latency, Sensitivity analysis, Basic reproduction number.

References


WHO, “Global Tuberculosis Report 2016,” [Online]. Available: https://www.who.int/tb/publications/global_report/gtbr2016_executive_summary.pdf?ua.. [Diakses 7 Oktober 2020].

S. Charismanda dan I. Pramudyaningsih, “Pengaruh Pemberian Imunisasi BCG terhadap Kejadian Penyakit TBC pada An.L di Desa Kedungwaru Lor Kecamatan Karanganyar Demak,” Jurnal Profesi Keperawatan, vol. 4, no. 1, pp. 22-28, 2017.

P. Dr. Ayustawati, Mengenali keluhan Anda, Informasi Medika, 2013.

A. I. Enagi, et all “A Mathematical Model of Tuberculosis Control Incorporating Vaccination, Latency and Infectious Treatments (Case Study of Nigeria),” International Journal of Mathematics and Computer Science, vol. 12, no. 2, pp. 97-106, 2017.

H. Setiawan dan J. Nugraha, “Analisis Kadar IFN-γ dan IL-10 pada PBMC Penderita Tuberkulosis Aktif, Laten dan Orang Sehat, Setelah diStimulasi dengan Antigen ESAT-6,” Jurnal Biosains Pascasarjana, vol. 18, 2016.

U. Rafflesia, "Model Penyebaran penyakit Tuberkulosis (TBC)," Jurnal Gradien, vol. 10, no. 2, pp. 983-986, 2014.

L. Nurjanah, F. Ilahi, D, Suandi, “Analisis Kestabilan Global dengan Menggunakan Fungsi Lyapunov pada Model Dinamik Epidemik SIR”, KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 3 no. 1, pp. 68-76,2018.

P. Meksianis Zadrak Ndii, Pemodelan Matematika Dinamika Populasi dan Penyebaran Penyakit, Yogyakarta: Deepublish, 2018.

J. Harianto, M.A. Marcus, J. Nainggolan, "Analisis Kestabilan Lokal Titik Ekuilibrium Model Dinamik Kebiasaan Merokok” KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 5 no. 2, pp. 95-107,2020.

D. G. Zill, A First Course in Differential Equations with Modeling Applications, 10th ed, Brooks/Cole Cengage Learning, 2009.




DOI: https://doi.org/10.15575/kubik.v6i2.14938

Refbacks

  • There are currently no refbacks.


Journal KUBIK: Jurnal Publikasi Ilmiah Matematika has indexed by