Development of Intertextual-Based E-Book on the Concept of Buffer Solution


Nur Sehasari Dewi(1*)

(1) Department of Chemical Education, Faculty of Mathematics and Science, Indonesia Education University, Bandung 40154, Indonesia
(*) Corresponding Author

Abstract


Students are necessary to understand macroscopic, sub-microscopic, and symbolic representations levels in buffer solution concept. The research aims to develop the intertextual-based e-book on the concept of buffer solution. The study is part of the research and development plan for creating teaching materials. Stages of research are conducted as follows research and information collecting, planning, and developing the preliminary form of product. Based on the result, the product of teaching material has characteristic, which is connecting the three levels of chemical representation on the buffer solution concept. Due to their visualization character and multiple representational relationship, interactive e-books demonstrate the power and value of modeling, learning, and assessment perspectives. Intertextual e-books potential to be implemented as teaching materials in buffer solution concepts.

Keywords


buffer solution; interactive; representation; visualization

Full Text:

PDF

References


Ainsworth, S. (1999). The functions of multiple representations. Computers & education, 33(2-3), 131-152. Retrieved from www.elsevier.com/locate/compedu.

Bozkurt, A., & Bozkaya, M. (2015). Evaluation Criteria for Interactive E-Books for Open and Distance Learning. International Review of Research in Open and Distributed Learning, 16(5), 58–82. Retrieved from https://files.eric.ed.gov/fulltext/EJ1077792.pdf

Brown T. L. LeMay J. H. E. Bursten B. E. Murphy C. J. & Woodward P. (2009). Chemistry: the central science - 12th edition (12th ed.). United State: Pearson Prentice Hall.

Cheng, M., & Gilbert, J. K. (2009). Towards a Better Utilization of Diagrams in Research into the Use of Representative Levels in Chemical Education. In Multiple Representations in Chemical Education, 55–72. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8872-8.

Chittleborough, G., & Treagust, D. F. (2007). The Modelling Ability of Non-major Chemistry Students and Their Understanding of The Sub-microscopic Level. Chemistry education research and practice, 8(3), 274-292. https://doi.org/https://doi.org/10.1039/B6RP90035F

Davidowitz, B., & Chittleborough, G. (2009). Linking the Macroscopic and Sub-microscopic Levels: Diagrams. In Multiple Representations in Chemical Education, 169–191. Netherlands Springer. https://doi.org/10.1007/978-1-4020-8872-8_9

Farida, I., Helsy, I., Fitriani, I., & Ramdhani, M. A. (2018). Learning Material of Chemistry in High School Using Multiple Representations. In IOP Conference Series: Materials Science and Engineering (Vol. 288, No. 1, p. 012078). IOP Publishing. Retrieved from http://digilib.uinsgd.ac.id/5760/

Gilbert, J. K. (2008). Visualization: An Emergent Field of Practice and Enquiry in Science Education. In Visualization: Theory and Practice in Science Education (pp. 3–24). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-5267-5_1

Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and Application of Suitable Criteria for The Evaluation of Chemical Representations in School Textbooks. Chemistry Education Research and Practice, 12(1), 5–14. https://doi.org/10.1039/c1rp90003j.

Harrison, A. G., & Treagusf, D. F. (2002). The Particulate Nature of Matter: Challenges in Understanding the Submicroscopic World. In Chemical Education: Towards Research-based Practice (pp. 189–212). Dordrecht: Springer. https://doi.org/10.1007/0-306-47977-X_9

Hidayanti, U., & Rosilawati, I. (2018). Pengembangan E-book Interaktif Berbasis Representasi Kimia pada Materi Larutan Penyangga. Journal Pendidikan Dan Pembelajaran Kimia, 7(2), 1-12. Retrieved http://jurnal.fkip.unila.ac.id/index.php/JPK/article/view/14999

Huda, T. A., Fadiawati, N., & Tania, L. (2015). Pengembangan E-book Interaktif pada Materi Termokimia Berbasis Representasi Kimia. Jurnal Pendidikan dan Pembelajaran Kimia, 4(2), 530-542. Retrieved from http://jurnal.fkip.unila.ac.id/index.php/JPK/article/view/9404

Jaber, L. Z., & BouJaoude, S. (2012). A Macro-Micro-Symbolic Teaching to Promote Relational Understanding of Chemical Reactions. International Journal of Science Education, 34(7), 973–998. https://doi.org/10.1080/09500693.2011.569959

Jespersen, N., Brady, J., & Hyslop, A. (2012). Chemistry The Molecular Nature of Matter. USA: John Willey & Sons, Inc.

Kozma, R.B. (2000). Students Collaborating with Computer Models and Physical Experiments. In C. Hoadley (Ed.), Computer support for collaborative learning. Mahwah, NJ: Erlbaum. https://doi.dx.org/10.22318/cscl1999.439

Kozma, R.B., Chin, E., Russell, J., & Marx, N. (2000). The Roles of Representations and Tools in The Chemistry Laboratory and Their Implications for Chemistry Instruction. Journal of the Learning Sciences, 9(2), 105 - 143. Retrieved https://www.jstor.org/stable/1466853

Kozma, R. B., & Russell, J. (1997). Multimedia and Understanding: Expert and Novice Responses to Different Representations of Chemical Phenomena. Journal of Research in Science Teaching, 34(9), 949–968. Retrieved from https://eric.ed.gov/?id=EJ557519

Lai, J. Y., & Chang, C. Y. (2011). User Attitudes Toward Dedicated E-Book Readers for Reading: The Effects of Convenience, Compatibility and Media Richness. Online Information Review, 35(4), 558–580. https://doi.org/10.1108/14684521111161936

Lynch, K. (2012). E-books: The Future for Publishers and Libraries. Collection Building, 31(2), 78–80. https://doi.org/10.1108/01604951211229872

Munir. (2009). Pembelajaran Jarak Jauh Berbasis Teknologi Informasi dan Komunikasi (TIK). Bandung: Penerbit Alfabeta.

Ohene-Djan, J., & Fernandes, A. A. A. (2003). Personalising Electronic Books. Journal of Digital Information, 3(4). Retrieved from https://journals.tdl.org/jodi/index.php/jodi/article/view/jodi-103

Orgill, M. K., & Sutherland, A. (2008). Undergraduate Chemistry Students’ Perceptions of and Misconceptions about Buffers and Buffer Problems. Chemistry Education Research and Practice, 9(2), 131–143. https://doi.org/10.1039/B806229N

Pallant, A., & Tinker, R. F. (2004). Reasoning With Atomic-Scale Molecular Dynamic Models. Journal of Science Education and Technology, 13(1), 51–66.

https://doi.org/10.1023/B:JOST.0000019638.01800.d0

Silberberg, M. S. (Martin S. (2010). Principles of general chemistry (2nd ed.). USA: McGraw-Hill.

Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233. https://doi.org/10.1021/ED073P233

Stojanovska, M., Petruševski, V. M., & Šoptrajanov, B. (2017). Study of The Use of The Three Levels of Thinking and Representation. Contributions, Section of Natural, Mathematical and Biotechnical Sciences, 35(1).http://dx.doi.org/10.20903/csnmbs.masa.2014.35.1.52

Sugiyono, D. (2013). Metode penelitian pendidikan pendekatan kuantitatif, kualitatif dan R&D. Bandung: Alfabeta.

Sulistyowati, T., & Poedjiastoeti, S. (2013). Kelayakan Multimedia Interaktif Berbasis Intertekstual pada Materi Reaksi Kimia untuk Kelas X SMA. Unesa Journal of Chemical Education, 2(3), 57–63. Retrieved from https://jurnalmahasiswa.unesa.ac.id/index.php/journal-of-chemical-education/article/view/4469

Talanquer, V. (2011). Macro, Submicro, and Symbolic: The Many Faces of The Chemistry “Triplet.” International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435

Tan, S., & Waugh, R. (2014). Use of Virtual Reality in Teaching and Learning Molecular Biology. In 3D Immersive and Interactive Learning (pp. 17–43). Springer Singapore. https://doi.org/10.1007/978-981-4021-90-6_2

Tasker, R., & Dalton, R. (2006). Research Into Practice: Visualisation of the Molecular World using Animations. Chemistry Education Research and Practice, 7(2), 141–159. https://doi.org/10.1039/B5RP90020D

Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The Role of Submicroscopic and Symbolic Representations in Chemical Explanations. International Journal of Science Education, 25(11), 1353–1368. https://doi.org/10.1080/0950069032000070306

Varelas, M., & Pappas, C. C. (2006). Intertextuality in Read-alouds of Integrated Science-literacy Units in Urban Primary Classrooms: Opportunities for The Development of thought and Language. Cognition and Instruction, 24(2), 211–259. https://doi.org/10.1207/s1532690xci2402_2

Vassiliou, M., & Rowley, J. (2008). Progressing the Definition of “E-book.” Library Hi Tech, 26(3), 355–368. https://doi.org/10.1108/07378830810903292

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry (10th ed.). USA: Mary Finch.

Wu, H. K. (2003). Linking the Microscopic View of Chemistry to Real-Life Experiences: Intertextuality in a High-School Science Classroom. Science Education, 87(6), 868–891. https://doi.org/10.1002/sce.10090

Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting Understanding of Chemical Representations: Students’ Use of a Visualization Tool in the Classroom. Journal of Research in Science Teaching, 38(7), 821–842. https://doi.org/10.1002/tea.1033

Zhang, D. (2005). Interactive Multimedia-Based E-Learning: A Study of Effectiveness. International Journal of Phytoremediation, 21(1), 149–162. https://doi.org/10.1207/s15389286ajde1903_3




DOI: https://doi.org/10.15575/jtk.v7i2.21235

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 nur sari dewi

Journal  Tadris Kimiya Is Indexed By : 


Lisensi Creative Commons

Chemistry Education: Jurnal Tadris Kimiya licensed with Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0Copyright is protected by lawp-ISSN: 2527-6816 | e-ISSN: 2527-9637