ANALISIS MISKONSEPSI MAHASISWA CALON GURU KIMIA PADA KONSEP PARTICULATE OF MATTER

Yuli Rahmawati, Tuszie Widhiyanti, Alin Mardiah

Abstract


Penelitian ini bertujuan untuk menganalisis miskonsepsi mahasiswa calon guru pada konsep particulate of matter. Metode yang digunakan dalam penelitian ini adalah survei dengan teknik pengumpulan data berupa two tier diagnostic test Particle Theory Diagnostic Instrument (PTDI) yang diadaptasi dari Treagust, Chandrasegaran, Crowley, Yung, Cheong dan Othman serta dikembangkan oleh Widhiyanti, observasi, dan wawancara yang diujikan pada mahasiswa calon guru program studi pendidikan kimia tingkat I sampai IV berjumlah 148 mahasiswa. Hasil penelitian menunjukkan bahwa mahasiswa mengalami miskonsepsi pada 10 butir soal dari 11 soal yang diberikan pada instrumen two tier diagnostic test. Konsistensi jawaban siswa pada setiap kategori tidak mencapai 10% dari jumlah jawaban benar, mahasiswa tidak memahami konsep secara mendalam. Hal ini dibuktikan dengan penurunan jumlah jawaban benar (pada tier 1) dan alasan benar (pada tier 2) dengan persentase lebih dari 10%. Dengan demikian, perlu dilakukan pendalaman materi particulate of mater pada mahasiswa calon guru kimia untuk mengatasi miskonsepsi yang terjadi.


Keywords


miskonsepsi; particulate of matter; particle theory diagnostic instrument (PTDI); two-tier diagnostic test

References


Alamina, J. I., & Etokeren, I. S. (2018). Effectiveness of Imagination Stretch Teaching Strategy in Correcting Misconceptions of Students about Particulate Nature of Matter. Journal of Education, Society and Behavioural Science, 27(1), 1-11.

Ayas, A., Ozmen, H., & Calik, M. (2010). Students’ conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8, 165-184.

Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Students’ misconceptions and how to overcome them. In Misconceptions in Chemistry (pp. 21-36). Springer, Berlin, Heidelberg.

Çalık, M., & Ayas, A. (2005). A comparison of level of understanding of grade 8 students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638-667.

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An Evaluation of a Teaching Intervention to Promote Students’ Ability to Use Multiple Levels of Representation When Describing and Explaining Chemical Reactions. Research In Science Education, 237-248.

Chang, Raymond. (2003). Kimia Dasar Konsep-Konsep Inti Edisi 3. Jakarta: Erlangga.

Coll, R. K., France, B., & Taylor, I. (2005). The role of models and analogies in science. International Journal of Science Education, 27(2), 183–198.

Demircioglu, G. A. (2005). Conceptual Change Achieved Through A New Teaching Program on Acid and Base. Journal of Chemistry Education Research and Practice, 6(1), 36-51.

Duit, R., Treagust, D. & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice, In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change. New York, USA: Routledge.

Hadinugrahaningsih, T., Zahiya, B., Rahmawati, Y., & Kartika, I. R. (2018). Analisis Laboratory Jargon dan Miskonsepsi dalam Materi Asam Basa. Jurnal Riset Pendidikan Kimia, 8(2), 11-24.

Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.

Johnson, P. (2006). The development of students’ understanding of the particle theory and its role in their conception of macroscopic phenomena. In H. Fischler & C. S. Reiners (Eds.), Die Teilchenstructur der Materie im Physik- und Chemieunterricht (The particle structure of materials in physics and chemistry instruction). Berlin: Logos.

Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education (2002). In J. K. Gilbert, Od Jong, R. Justi, D. F. Treagust & J Hv Driel (Eds.), Chemical education: Towards research-based practice. Dordrecht: Kluwer Academic.

Kapici, H. Ö.& Akcay, H. (2016). Particulate Nature of Matter Misconceptions Held By Middle and High School Students in Turkey. European Journal of Education Studies, 2(8), 43-58.

Mahdi, J. G. (2014). Student Attitudes towards Chemistry: an Examination of Choices and Preferences. American Journal of Educational Research, 2(6), 351-356 .

Osborne, J., & Dillom. J. (2008). Science education in Europe: critical reflection. London: The Nuffield Foundation.

Peterson, R., & Treagust, D. (1986). Identification Of, Secondary Students'misconceptions Or Covalent Bonding And Structure Concepts Using A Diagnostic Instrument. Research in science education, 16, 40-48.

Peterson, R. F., Treagust, D. F., & Garnett, P. J. (1989). Development and application of a diagnostic instrument to evaluate grade 11 & 12 students’ concepts of covalent bonding and structure after a course of instruction. Journal of Research in Science Teaching, 26 (4), 301–314.

Prodjosantoso, A. K., Hertina, A. M., & Irwanto. (2019). The Misconception Diagnosis on Ionic and Covalent Bonds Concepts with Three Tier Diagnostic Test. International Journal of Instruction, 12(1), 1477-1488.

Sadler, P. M. & Sonnert, G. (2016). Understanding Misconceptions Teaching and Learning in Middle School Physical Science. American Educator, 26-32.

Salame, I. I., Sarowar, S., Begum, S., & Krauss, D. (2011). Students’ alternative conceptions about atomic properties and the periodic table. The Chemical Educator, 16, 190-194.

Satriana, T., Yamtianah, S., Ashadi, & Indriyanti, N.Y. (2018). Student’s profile of misconception in chemical equilibrium. Journal of Physics: Conf. Series, 1097 012066.

Soeharto, Csapó, B., Sarimanah, E., Dewi, F. I., & Sabri, E. (2019). A Review of Students Common Misconceptions in Science and Their Diagnostic Assessment Tools, Jurnal Pendidikan IPA Indonesia, 8(2), 247-266.

Stojanovska, M. I., Šoptrajanov, B. T., & Petruševski, V. M. (2012). Addressing Misconceptions about the Particulate Nature of Matter among Secondary-School and High-School Students in the Republic of Macedonia. Creative Education, 3(5), 619-631.

Tamir, P. (1971). An alternative approach to the construction of multiple choice test items. Journal of Biological Education, 5(6), 305-307.

Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International journal of science education, 10(2), 159-169.

Treagust, D. F., Jacobowitz, R., Gallagher, J. J., & Parker, J. (2003). Embedded assessment in your teaching. Science Scope, 26(6), 36–39.

Treagust, D. F., & Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an international perspective. International Journal of Science Education, 29(4), 391–403.

Treagust, D. F., Chandrasegaran, A. L., Crowley, J., Yung, B. H. W., Cheong, I. P. A., & Othman, J. (2010). Evaluating students' understanding of kinetic particle theory concepts relating to the states of matter, changes of states and diffusion: A cross-national study. International Journal of Science and Mathematics Education, 8(1), 141-164.

Widhiyanti, T.(2016). Curriculum Evaluation and Predict-Observe-Explain Implementation: A Case Study on Developing Chemistry Pre-service Teachers’ Understanding of Particulate Nature of Matter in Indonesia. Doctoral Disertation, Curtin University.

Woldeamanuel, M. M., Atagana, H., & Engida, T. (2014). What Makes Chemistry Difficult?. Issues in ASEAN Journal Community Engagement, 31-43.

Yezierski, E. J. & Birk, J. P. (2006). Misconceptions about the Particulate Nature of Matter Using Animations To Close the Gender Gap. Journal of Chemical Education, 83(6), 954-96.




DOI: https://doi.org/10.15575/jtk.v4i2.4824

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Yuli Rahmawati

Journal  Tadris Kimiya Is Indexed By : 


Lisensi Creative Commons

Pendidikan Kimia: Jurnal Tadris Kimiya  dilisensikan dengan Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0Hak cipta dilindungi undang-undangp-ISSN: 2527-6816 | e-ISSN: 2527-9637