FABRICATION OF CU MODIFIED NANO CHITOSAN WITH BROMOCRESOL GREEN AS INTELLIGENT PACKAGING


Neny Rasnyanti M Aras(1*), Adinda Irwana(2), Ameliana Utami(3)

(1) Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia
(2) Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia
(3) Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia
(*) Corresponding Author

Abstract


In recent advancements, the development of smart packaging systems for food has focused on utilizing composite materials to enhance functionality and sustainability. In this study, the composite film from chitosan and PVA was combined at various concentrations (ranging from 0.1% to 0.5%) with the addition of Cu(500mM) and 1% STPP at a 5:1 ratio. An additional indicator was included to detect fish spoilage. The synthesized chitosan material was then blended with PVA to form a composite film. The film was characterized using FTIR, which confirmed the presence of fingerprint vibrations indicating the cross-linking between TPP, chitosan, and Cu. These bonds were observed at wave numbers 1118 cm-1, 879 cm-1, and 603 cm-1. SEM analysis revealed that the film had particle sizes ranging from 865 nm to 1.49 μm. XRD analysis showed distinctive features of pure chitosan and chitosan composite. The composite film K-05 produced an amorphous structure, indicating decreased crystallinity due to the addition of STPP and Cu. The water uptake test demonstrated that an increased concentration of chitosan in the composite led to higher absorption and solubility effects. Conversely, the addition of chitosan in the film decreased water vapor permeability as determined by the water vapor permeability test. The antibacterial test conducted on all films (concentration of 0.1% to 0.5%) indicated that the films K-01 and K-02 exhibited the best zone of inhibition against Escherichia coli. This study sucessfully synthesized and characterized a smart packaging film composed of polyvinyl alcohol (PVA), chitosan, copper (Cu), and bromocresol green (BCG) indicator, designed to monitor food freshness through visual pH changes and inhibition of microbial growth.

Keywords


smart packaging, nano chitosan, chitosan-PVA-TPP-Cu, antibacterial packaging

Full Text:

PDF

References


T. De Pilli, A. Baiano, G. Lopriore, C. Russo, and G. M. Cappelletti, “An overview on the environmental impact of food packaging,” in Sustainable Innovations in Food Packaging, T. De Pilli, A. Baiano, G. Lopriore, C. Russo, and G. M. Cappelletti, Eds., Cham: Springer International Publishing, 1-14, 2021, https://doi.org/10.1007/978-3-030-80936-2_1

R. Dani, K. Tiwari, and A. P. B. Prabhakar, “A review of food packaging materials and its impact on environment,” AIP Conference Proceedings, 2978(1), 020006, 2024, https://doi.org/10.1063/5.0182889

G. Fuertes, I. Soto, R. Carrasco, M. Vargas, J. Sabattin, and C. Lagos, “Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety,” Journal of Sensors, 2016(4046061), 2016, https://doi.org/10.1155/2016/4046061

K. B. Biji, C. N. Ravishankar, C. O. Mohan, and T. K. Srinivasa Gopal, “Smart packaging systems for food applications: a review,” J Food Sci Technol, 52(10), 6125–6135, 2015, https://doi.org/10.1007/s13197-015-1766-7

C. G. Otoni, P. J. P. Espitia, R. J. Avena-Bustillos, and T. H. McHugh, “Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads,” Food Research International, 83, 60–73, 2016, https://doi.org/10.1016/j.foodres.2016.02.018

P. J. P. Espitia, W.-X. Du, R. D. J. Avena-Bustillos, N. D. F. F. Soares, and T. H. McHugh, “Edible films from pectin: Physical-mechanical and antimicrobial properties - A review,” Food Hydrocolloids, 35, 287–296, 2014, https://doi.org/10.1016/j.foodhyd.2013.06.005

M. Hosseinnejad and S. M. Jafari, “Evaluation of different factors affecting antimicrobial properties of chitosan,” International Journal of Biological Macromolecules, 85, 467–475, 2016, https://doi.org/10.1016/j.ijbiomac.2016.01.022

R. Dadi, R. Azouani, M. Traore, C. Mielcarek, and A. Kanaev, “Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains,” Materials Science and Engineering: C, 104, 109968, 2019, https://doi.org/10.1016/j.msec.2019.109968

F. Hemmati et al., “The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus,” International Journal of Biological Macromolecules, 163, 2248–2258, Nov. 2020, https://doi.org/10.1016/j.ijbiomac.2020.09.037

M. Salas-Orozco, N. Niño-Martínez, G.-A. Martínez-Castañón, F. T. Méndez, M. E. C. Jasso, and F. Ruiz, “Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review,” Journal of Nanomaterials, 2019, 1–11, 2019, https://doi.org/10.1155/2019/7630316

N. R. M. Aras, M. F. Lestari, and A. Irwana, “Synthesis of Smart Packaging Based on Chitosan-PVA/Binahong Extract as an Antibacterial Plastic,” ICA, 13–22, 2024, https://doi.org/10.20956/ica.v17i1.31419

X. Zhang, Z. Zhang, W. Wu, J. Yang, and Q. Yang, “Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity,” Bioprocess Biosyst Eng, 44(6), 1193–1199, 2021, https://doi.org/10.1007/s00449-021-02521-x

M. Aslam and M. M. A. Kalyar, “Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties,” Polymer Bulletin, 78, 2021, https://doi.org/10.1007/s00289-020-03173-9

R. N. Annisa, R. A. Lusiana, G. Gunawan, and H. Muhtar, “Optimization of chitosan-carboxymethyl chitosan membrane modification with PVA to increase creatinine and urea permeation efficiency,” J. Kim. Sains Apl., 27(4), 189–196, Apr. 2024, https://doi.org/10.14710/jksa.27.4.189-196

M. Aslam, Z. A. Raza, and A. Siddique, “Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films,” Polym. Bull., 78(4), 1955–1965, 2021, https://doi.org/10.1007/s00289-020-03194-4

R. Eivazzadeh-Keihan et al., “Review: the latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties,” J Mater Sci, 57(6), 3855–3891, 2022, dhttps://doi.org/10.1007/s10853-021-06757-6

B. Zhu et al., “A pH-neutral bioactive glass empowered gelatin–chitosan–sodium phytate composite scaffold for skull defect repair,” J. Mater. Chem. B, 11(40), 9742–9756, 2023, https://doi.org/10.1039/D3TB01603J

M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, “Natural-based plasticizers and biopolymer films: A review,” European Polymer Journal, 47(3),254–263, 2011, https://doi.org/10.1016/j.eurpolymj.2010.12.011

R. K. Deshmukh, L. Hakim, and K. K. Gaikwad, “Active Packaging Materials,” Curr Food Sci Tech Rep, 1(2), 123–132, 2023, https://doi.org/10.1007/s43555-023-00004-6

A. Siddiqui and K. Chand, “Enhancement of shelf life of food using active packaging technologies,” Springer International Publishing, 133–143, 2022 https://doi.org/10.1007/978-3-030-90549-1_8

H. Ahari and S. P. Soufiani, “Smart and Active Food Packaging: Insights in Novel Food Packaging,” Front. Microbiol., 12, 2021, https://doi.org/10.3389/fmicb.2021.657233

V. A. Pereira, I. N. Q. De Arruda, and R. Stefani, “Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging,” Food Hydrocolloids, 43, 180–188, 2015, https://doi.org/10.1016/j.foodhyd.2014.05.014

D. K. Chandra, A. Kumar, and C. Mahapatra, “Fabricating Chitosan Reinforced Biodegradable Bioplastics from Plant Extract with Nature Inspired Topology,” Waste Biomass Valor, 15 (4), 2499–2512, 2024, https://doi.org/10.1007/s12649-023-02293-3

P. Cazón and M. Vázquez, “Mechanical and barrier properties of chitosan combined with other components as food packaging film,” Environ Chem Lett, 18(2), 257–267, 2020, https://doi.org/10.1007/s10311-019-00936-3

A. Abraham, P. A. Soloman, and V. O. Rejini, “Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties,” Procedia Technology, 24, 741–748, 2016, https://doi.org/10.1016/j.protcy.2016.05.206

P. Ramasamy and A. Shanmugam, “Characterization and wound healing property of collagen-chitosan film from Sepia kobiensis (Hoyle, 1885),” Int J Biol Macromol, 74, 93–102, 2015, https://doi.org/10.1016/j.ijbiomac.2014.11.034.

T. Ayode Otitoju, A. Latif Ahmad, and B. Seng Ooi, “Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending,” RSC Advances, 8(40), 22710–22728, 2018, https://doi.org/10.1039/C8RA03296C

A. R. Pandey, U. S. Singh, M. Momin, and C. Bhavsar, “Chitosan: Application in tissue engineering and skin grafting,” J Polym Res, 24(8), 125, 2017, https://doi.org/10.1007/s10965-017-1286-4

J. Fourie, F. Taute, L. du Preez, and D. de Beer, “Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review,” Regen. Eng. Transl. Med., 8(1), 1–21, 2022, https://doi.org/10.1007/s40883-020-00187-7

V. O. Kudyshkin et al., “Features of Synthesis of Graft Copolymers of Chitosan and Acrylic Acid,” Polym. Sci. Ser. B, May 2024, https://doi.org/10.1134/S1560090424600165

Z. Czibulya et al., “The Effect of the PVA/Chitosan/Citric Acid Ratio on the Hydrophilicity of Electrospun Nanofiber Meshes,” Polymers, 13(20), 2021, https://doi.org/10.3390/polym13203557

J. M. Dodda et al., “Biocompatible hydrogels based on chitosan, cellulose/starch, PVA and PEDOT:PSS with high flexibility and high mechanical strength,” Cellulose, 29(12), 6697–6717, Aug. 2022, https://doi.org/10.1007/s10570-022-04686-4

E. Y. Wardhono et al., “Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach,” Polymers, 14 (23), 2022, https://doi.org/10.3390/polym14235216

J. Jegal and K.-H. Lee, “Chitosan membranes crosslinked with sulfosuccinic acid for the pervaporation separation of water/alcohol mixtures,” Journal of Applied Polymer Science, 71(4), 671–675, 1999, https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<671::AID-APP19>3.0.CO;2-T

S. K. Mallapragada and N. A. Peppas, “Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water,” J. Polym. Sci. B Polym. Phys., 34(7), 1339–1346, 1996, doi: https://doi.org/10.1002/(SICI)1099-0488(199605)34:7<1339::AID-POLB15>3.0.CO;2-B

L. Rahman and J. Goswami, “Poly(Vinyl Alcohol) as Sustainable and Eco-Friendly Packaging: A Review,” J Package Technol Res, 7(1), 1–10, 2023, https://doi.org/10.1007/s41783-022-00146-3

Z. A. Alhulaybi and I. Dubdub, “Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA,” Polymers, 16(5), 2024, https://doi.org/10.3390/polym16050629

A. A. Rowe, M. Tajvidi, and D. J. Gardner, “Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA),” J Therm Anal Calorim, 126(3), 1371–1386, Dec. 2016, https://doi.org/10.1007/s10973-016-5791-1

E. Marin, J. Rojas, and Y. Ciro, “A review of polyvinyl alcohol derivatives: Promising materials for pharmaceutical and biomedical applications,” African Journal of Pharmacy and Pharmacology, 2014, Accessed: Aug. 10, 2023. [Online]. Available: https://www.semanticscholar.org/paper/A-review-of-polyvinyl-alcohol-derivatives%3A-for-and-Marin-Rojas/a2eb0a887133b578aaea0db03a42fbad1df95359

U. K. Parida, A. K. Nayak, B. K. Binhani, and P. L. Nayak, “Synthesis and Characterization of Chitosan-Polyvinyl Alcohol Blended with Cloisite 30B for Controlled Release of the Anticancer Drug Curcumin,” JBNB, 02(04), 414–425, 2011, https://doi.org/10.4236/jbnb.2011.24051

M. S. B. Reddy, D. Ponnamma, R. Choudhary, and K. K. Sadasivuni, “A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds,” Polymers, 13(7), 2021, https://doi.org/10.3390/polym13071105

J. Bonilla, E. Fortunati, L. Atarés, A. Chiralt, and J. M. Kenny, “Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films,” Food Hydrocolloids, 35, 463–470, Mar. 2014, https://doi.org/10.1016/j.foodhyd.2013.07.002

E. Cavalcante, F. Junior, M. Pereira, P. Pereira, M. Costa, and H. Oliveira, “Antibacterial activity of chitosan and zinc oxide impregnated in PVA-based membranes,” Research, Society and Development, 12, e23812340720, 2023, https://doi.org/10.33448/rsd-v12i3.40720

W. Zhang et al., “Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films,” Food Chemistry, 443, 138506, 2024, https://doi.org/10.1016/j.foodchem.2024.138506

F. Liu et al., “Improved hydrophobicity, antibacterial and mechanical properties of polyvinyl alcohol/quaternary chitosan composite films for antibacterial packaging,” Carbohydr Polym, 312, 120755, 2023, https://doi.org/10.1016/j.carbpol.2023.120755

L. Yang et al., “Preparation and characterization of PVA/arginine chitosan/ZnO NPs composite films,” International Journal of Biological Macromolecules, 226, 184–193, 2023, https://doi.org/10.1016/j.ijbiomac.2022.12.020

J. N. N. Bueno, E. Corradini, P. R. De Souza, V. D. S. Marques, E. Radovanovic, and E. C. Muniz, “Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application,” Polymer Testing, 101, 107279, 2021,https://doi.org/10.1016/j.polymertesting.2021.107279

B. Piluharto, A. Sjaifullah, I. Rahmawati, and E. Nurharianto, “Membran Blend Kitosan/Poli Vinil Alkohol (PVA): Pengaruh Komposisi material blend, pH, dan Konsentrasi bahan Pengikat Silang,” JKR, 2(2), 77, 2017, https://doi.org/10.20473/jkr.v2i2.6195

D. K. Maharani and R. D. Safitri, “Karakterisasi film PVA/kitosan/zeolit tersubtitusi ion Ag+ berpotensi sebagai kemasan aktif,” UJC, 11(1), 46–52, 2022, https://doi.org/10.26740/ujc.v11n1.p46-52

N. Mulchandani, N. Shah, and T. Mehta, “Synthesis of Chitosan-Polyvinyl Alcohol Copolymers for Smart Drug Delivery Application,” Polymers and Polymer Composites, 25(3), 241–246, 2017, https://doi.org/10.1177/096739111702500311

G. K. Malik, A. Khuntia, and J. Mitra, “Comparative Effect of Different Plasticizers on Barrier, Mechanical, Optical, and Sorption Properties of Hydroxypropyl Methylcellulose (HPMC)–Based Edible Film,” J. Biosyst. Eng., 47(2), 93–105, Jun. 2022, https://doi.org/10.1007/s42853-022-00132-2

S. Poulose, I. Jönkkäri, M. S. Hedenqvist, and J. Kuusipalo, “Bioplastic films with unusually good oxygen barrier properties based on potato fruit-juice,” RSC Advances, 11(21), 12543–12548, 2021, https://doi.org/10.1039/D1RA01178B

E. Jamróz, P. Kulawik, and P. Kopel, “The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review,” Polymers, 11(4), Apr. 2019, https://doi.org/10.3390/polym11040675

G. Cárdenas, J. Díaz, M. F. Meléndrez, and C. Cruzat, “Physicochemical properties of edible films from chitosan composites obtained by microwave heating,” Polym. Bull., 61(6), 737–748, 2008, https://doi.org/10.1007/s00289-008-0994-7

A. Jiang et al., “Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application,” Polymers, 15(10), 2023, https://doi.org/10.3390/polym15102235

J. D. Giraldo and B. L. Rivas, “Direct ionization and solubility of chitosan in aqueous solutions with acetic acid,” Polym. Bull., 78(3), 1465–1488, 2021, https://doi.org/10.1007/s00289-020-03172-w

M. Marques Gonçalves, D. Florencio Maluf, R. Pontarolo, C. Ketzer Saul, E. Almouazen, and Y. Chevalier, “Negatively charged chitosan nanoparticles prepared by ionotropic gelation for encapsulation of positively charged proteins,” International Journal of Pharmaceutics, 642, 123164, 2023, https://doi.org/10.1016/j.ijpharm.2023.123164

F. G. de Carvalho et al., “Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation,” Materials Science and Engineering: C, 104, 109885, 2019, https://doi.org/10.1016/j.msec.2019.109885

T. Lam, H. Vu, N. Le, Lien, T. Nguyen Ngoc, and P. Dien, “Synthesis and characterization of chitosan nanoparticles used as drug carrier,” J. Chem., 44, 2006.

F. Khoerunnisa et al., “Physicochemical Properties of TPP-Crosslinked Chitosan Nanoparticles as Potential Antibacterial Agents,” Fibers Polym, 22(11), 2954–2964, 2021, https://doi.org/10.1007/s12221-021-0397-z

N. Al-nemrawi, S. Alsharif, and R. Dave, “Preparation of chitosan-tpp nanoparticles: The influence of chitosan polymeric properties and formulation variables,” International Journal of Applied Pharmaceutics, 10, 60, 2018, https://doi.org/10.22159/ijap.2018v10i5.26375

K.-I. Jang and H. G. Lee, “Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution,” J Agric Food Chem, 56(6),1936–1941, 2008, https://doi.org/10.1021/jf073385e.

M. Akkaya, T. Menlik, A. Sözen, and M. Gürü, “The Effects of Triton X-100 and Tween 80 Surfactants on the Thermal Performance of a Nano-Lubricant: An Experimental Study,” Int. J. of Precis. Eng. and Manuf.-Green Tech., 8(3), 955–967, May 2021, https://doi.org/10.1007/s40684-020-00280-w

A. Adhyatmika, R. Martien, and H. Ismail, “Preparasi Nanopartikel Senyawa Pentagamavunon-0 Menggunakan Matriks Polimer Kitosan Rantai Sedang dan Pengait Silang Natrium Tripolifosfat Melalui Mekanisme Gelasi Ionik Sebagai Kandidat Obat Antiinflamasi,” Majalah Farmaseutik, 13, 65, 2018, https://doi.org/10.22146/farmaseutik.v13i2.40916

S. Tripathy, S. Das, S. P. Chakraborty, S. K. Sahu, P. Pramanik, and S. Roy, “Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach,” Int J Pharm, 434(1–2), 292–305, 2012, https://doi.org/10.1016/j.ijpharm.2012.05.064

P. F. Vera Garcia et al., “PVA Blends and Nanocomposites, Properties and Applications: A Review,” in Green-Based Nanocomposite Materials and Applications, F. Avalos Belmontes, F. J. González, and M. Á. López-Manchado, Eds., Cham: Springer International Publishing, 2023, 191–206. https://doi.org/10.1007/978-3-031-18428-4_10

M. Shojaee Kang Sofla, S. Mortazavi, and J. Seyfi, “Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol,” Carbohydrate Polymers, 232, 115784, 2020, https://doi.org/10.1016/j.carbpol.2019.115784

K. Enoch, R. C. S, and A. A. Somasundaram, “Improved mechanical properties of Chitosan/PVA hydrogel – A detailed Rheological study,” Surfaces and Interfaces, 41, 103178, 2023, https://doi.org/10.1016/j.surfin.2023.103178

T. Yang, J. Wu, Y. Yao, K. Wang, Q. Zhang, and Q. Fu, “Towards the toughness-strength balance of poly(vinyl alcohol) films via synergic plasticization,” Polymer, 301, 127031, 2024, https://doi.org/10.1016/j.polymer.2024.127031

E. J. Dompeipen, “(Penaeus monodon) WITH INFRARED SPECTROSCOPY,” 2017.

E. M. Abdelrazek, I. S. Elashmawi, and S. Labeeb, “Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films,” Physica B: Condensed Matter, 405(8), pp. 2021–2027, 2010, https://doi.org/10.1016/j.physb.2010.01.095

D. S. More, M. J. Moloto, N. Moloto, and K. P. Matabola, “Silver/Copper Nanoparticle-Modified Polymer Chitosan/PVA Blend Fibers,” International Journal of Polymer Science, 2021, 1–12, 2021, https://doi.org/10.1155/2021/6217609

M. H. Buraidah and A. K. Arof, “Characterization of chitosan/PVA blended electrolyte doped with NH4I,” Journal of Non-Crystalline Solids, 357(16), 3261–3266, 2011, https://doi.org/10.1016/j.jnoncrysol.2011.05.021

D. Bhumkar and V. Pokharkar, “Studies on effect of pH on cross-linking of Chitosan with sodium tripolyphosphate: A technical note,” AAPS PharmSciTech, 7, E50, 2006, https://doi.org/10.1208/pt070250

M. M. AbdElhady, “Preparation and characterization of Chitosan/Zinc Oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric,” International Journal of Carbohydrate Chemistry, 2012, e840591, 2012, https://doi.org/10.1155/2012/840591

R. Priyadarshi, Sauraj, B. Kumar, and Y. S. Negi, “Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life,” Carbohydrate Polymers, 195, 329–338, 2018, https://doi.org/10.1016/j.carbpol.2018.04.089

N. P. S. Ayuni, N. W. Yuningrat, and N. W. Citra, “Kajian transpor kreatinin menggunakan membran kitosan-alginat tertaut silang polivinil alkohol (PVA),” J. Rek. Pros., vol. 12(2), 56, 2018, https://doi.org/10.22146/jrekpros.38401.

M. Miya, R. Iwamoto, and S. Mima, “FT-IR study of intermolecular interactions in polymer blends,” Journal of Polymer Science: Polymer Physics Edition, 22(6), 1149–1151, 1984, https://doi.org/10.1002/pol.1984.180220615

F. Hong et al., “Chitosan-based hydrogels: From preparation to applications, a review,” Food Chemistry: X, 21, 101095, 2024, https://doi.org/10.1016/j.fochx.2023.101095

D. Yan, Y. Li, Y. Liu, N. Li, X. Zhang, and C. Yan, “Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections,” Molecules, 26(23) ,2021, https://doi.org/10.3390/molecules26237136

M. A. Matica, F. L. Aachmann, A. Tøndervik, H. Sletta, and V. Ostafe, “Chitosan as a wound dressing starting material: antimicrobial properties and mode of action,” Int J Mol Sci, 20(23), 5889, 2019, https://doi.org/10.3390/ijms20235889

P. Sahariah and M. Másson, “Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship,” Biomacromolecules, 18, 2017, https://doi.org/10.1021/acs.biomac.7b01058.

H. Yilmaz Atay, “Antibacterial Activity of Chitosan-Based Systems,” in Functional Chitosan: Drug Delivery and Biomedical Applications, S. Jana and S. Jana, Eds., Singapore: Springer, 2019, 457–489. https://doi.org/10.1007/978-981-15-0263-7_15

M. Chandrasekaran, K. D. Kim, and S. C. Chun, “Antibacterial activity of chitosan nanoparticles: a review,” Processes, 8(9), 2020, https://doi.org/10.3390/pr8091173

S. Suganthi, S. Vignesh, J. Kalyana Sundar, and V. Raj, “Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications,” Appl Water Sci, 10(4), 100, 2020, https://doi.org/10.1007/s13201-020-1162-y

E. Tamahkar, “Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery,” Chem. Pap., 75(8), 3979–3987, 2021, https://doi.org/10.1007/s11696-021-01631-w

D. Pelinescu et al., “Antibacterial Activity of PVA Hydrogels Embedding Oxide Nanostructures Sensitized by Noble Metals and Ruthenium Dye,” Gels, 9(8), 2023, https://doi.org/10.3390/gels9080650

R. Goy, D. Britto, and O. Assis, “ArReview of the antimicrobial activity of chitosan,” Polimeros-ciencia E Tecnologia - POLIMEROS, 19, 2009, https://doi.org/10.1590/S0104-14282009000300013

C. Verma and M. A. Quraishi, “Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications,” Current Research in Green and Sustainable Chemistry, 4, 100184, 2021, https://doi.org/10.1016/j.crgsc.2021.100184

C. Ardean et al., “Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization,” International Journal of Molecular Sciences, 22(14), 2021, https://doi.org/10.3390/ijms22147449

Y. W. Hasnedi, “Pengembangan Kemasan Cerdas (Smart Packaging) Dengan Sensor Berbahan Dasar Chitosan-Asetat, Polivinil Alkohol, Dan Pewarna Indikator Bromthymol Blue Sebagai Pendeteksi Kebusukan Fillet Ikan Nila,” Institut Pertanian Bogor, Bogor, 2009.

A. Pacquit, K. T. Lau, H. McLaughlin, J. Frisby, B. Quilty, and D. Diamond, “Development of a volatile amine sensor for the monitoring of fish spoilage,” Talanta, 69(2), 515–520, 2006, https://doi.org/10.1016/j.talanta.2005.10.046

K. I. Oberg, R. Hodyss, and J. L. Beauchamp, “Simple optical sensor for amine vapors based on dyed silica microspheres,” Sensors and Actuators B: Chemical, 115(1), 79–85, 2006, https://doi.org/10.1016/j.snb.2005.08.021




DOI: https://doi.org/10.15575/ak.v11i1.33742

Copyright (c) 2024 Neny Rasnyanti M Aras, Adinda Irwana, Ameliana Utami

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CrossrefSINTAGoogle ScholarIndonesia One Search

View My Stats

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

https://journal1.uad.ac.id/xbola/ https://bidp3.dp3ak.jatimprov.go.id/assets/sbo/ https://jurnalham.komnasham.go.id/ham/ https://ejournal.unsub.ac.id/post/ https://ditpenjamu.uny.ac.id/themes/index.html https://sipede.sidoarjokab.go.id/data/bola/ https://peredaranpangan.pom.go.id/curl/ https://lib.radenintan.ac.id/system/