Implementation of BiLSTM to Predict World Crude Oil Prices
Keywords:
BiLSTM, MAPE, Parameters, Prediction, World Crude Oil PricesAbstract
References
V. G. Yadav, G. D. Yadav, and S. C. Patankar, “The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à -vis sustainability and the environment,†Clean Technol. Environ. Policy, vol. 22, no. 9, pp. 1757–1774, 2020, doi: 10.1007/s10098-020-01945-5.
C. W. Su, S. W. Huang, M. Qin, and M. Umar, “Does crude oil price stimulate economic policy uncertainty in BRICS?,†Pacific Basin Financ. J., vol. 66, no. September 2020, p. 101519, 2021, doi: 10.1016/j.pacfin.2021.101519.
Z. Jia, S. Wen, and B. Lin, “The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China,†Appl. Energy, vol. 302, no. August, p. 117612, 2021, doi: 10.1016/j.apenergy.2021.117612.
S. Karasu, A. Altan, S. Bekiros, and W. Ahmad, “A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series,†Energy, vol. 212, p. 118750, 2020, doi: 10.1016/j.energy.2020.118750.
A. Pourdaryaei et al., “Recent development in electricity price forecasting based on computational intelligence techniques in deregulated power market,†Energies, vol. 14, no. 19, pp. 1–28, 2021, doi: 10.3390/en14196104.
J. Wu, Z. Wang, Y. Hu, S. Tao, and J. Dong, “Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory,†Water Resour. Manag., vol. 37, no. 2, pp. 937–953, 2023, doi: 10.1007/s11269-022-03414-8.
Z. Hameed and B. Garcia-Zapirain, “Sentiment Classification Using a Single-Layered BiLSTM Model,†IEEE Access, vol. 8, pp. 73992–74001, 2020, doi: 10.1109/ACCESS.2020.2988550.
M. Yang and J. Wang, “Adaptability of Financial Time Series Prediction Based on BiLSTM,†Procedia Comput. Sci., vol. 199, pp. 18–25, 2021, doi: 10.1016/j.procs.2022.01.003.
D. Apriadi and A. Y. Saputra, “Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik Nurdi,†Resti, vol. 1, no. 1, pp. 19–25, 2022.
D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,†Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023, doi: 10.34312/euler.v11i1.19791.
A. Puspita Sari, E. A. Hakim, D. Arman Prasetya, R. Arifuddin, and P. Dani, “Sistem Prediksi Kecepatan Dan Arah Angin Menggunakan Bidirectional Long Short-Term Memory,†Semin. Keinsinyuran Progr. Stud. Progr. Profesi Ins., vol. 1, no. 1, pp. 6–16, 2021, doi: 10.22219/skpsppi.v1i0.4196.
G. Darmawan, N. Gusriani, R. Ruslan, F. Agustiana, and R. A. Saputra, “Perbandingan Model Bidirectional-LSTM dan Singular Spectrum Analysis dalam Peramalan Harga Cabai,†Innov. J. Soc. Sci. Res., vol. 3, no. 2, pp. 1504–1514, 2023.
F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,†Chaos, Solitons and Fractals, vol. 140, p. 110212, 2020, doi: 10.1016/j.chaos.2020.110212.
Investing, “crude-oil-historical-data @ www.investing.com,†investing.com, 2023. https://www.investing.com/commodities/crude-oil-historical-data
S. K. S. Sivamohan, S.S. Sridhar, “An Effective Recurrent Neural Network (RNN) based Intrusion Detection via Bi-directional Long Short-Term Memory,†IEEE Access, 2021, [Online]. Available: https://doi.org/10.1109/CONIT51480.2021.9498552
Q. T. Bui, Q. H. Nguyen, X. L. Nguyen, V. D. Pham, H. D. Nguyen, and V. M. Pham, “Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping,†J. Hydrol., vol. 581, p. 12479, 2020, doi: 10.1016/j.jhydrol.2019.124379.
A. H. Elsheikh et al., “Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia,†Process Saf. Environ. Prot., vol. 149, pp. 223–233, 2021, doi: 10.1016/j.psep.2020.10.048.
C. Magazzino, M. Mele, and N. Schneider, “A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions,†Renew. Energy, vol. 167, pp. 99–115, 2021, doi: 10.1016/j.renene.2020.11.050.
H. F. Fadli and A. F. Hidayatullah, “Identifikasi Cyberbullying Pada Media Sosial Twitter Menggunakan Metode Klasifikasi Random Forest,†Automata, 2019.
P. Singla, M. Duhan, and S. Saroha, “An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network,†Earth Sci. Informatics, vol. 15, no. 1, pp. 291–306, 2022, doi: 10.1007/s12145-021-00723-1.
D. Kent and F. Salem, “Performance of Three Slim Variants of the Long Short-Term Memory (LSTM) Layer,†Midwest Symp. Circuits Syst., vol. August, no. 7, pp. 307–310, 2019, doi: 10.1109/MWSCAS.2019.8885035.
M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A CNN-BiLSTM Model for Document-Level Sentiment Analysis,†Mach. Learn. Knowl. Extr., vol. 1, no. 3, pp. 832–847, 2019, doi: 10.3390/make1030048.
M. Piekutowska et al., “The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest,†Agronomy, vol. 11, no. 5, 2021, doi: 10.3390/agronomy11050885.
R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization,†Renew. Sustain. Energy Rev., vol. 124, no. June 2019, p. 109792, 2020, doi: 10.1016/j.rser.2020.109792.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Firda Yunita Sari, Nurissaidah Ulinnuha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â



