Kaitan Ruang Vektor Matriks V_n dan C_n
DOI:
https://doi.org/10.15575/kubik.v8i2.30415Keywords:
Sifat Penjumlahan Silang, Matriks Latin, Matriks Co-latinAbstract
V_n  didefinisikan sebagai himpunan matriks n×n  dengan sifat penjumlahan silang. Himpunan V_n  membentuk subruang dari ruang vektor R^(n×n)  dengan karakteristik tertentu. Selanjutnya terdapat himpunan matriks co-latin C_n  yang didefinisikan menggunakan matriks latin, yaitu matriks n×n dengan elemen {1,2,…,n}  yang muncul tepat satu kali pada setiap baris dan kolom. Dalam artikel ini dikaji keterkaitan antara ruang vektor V_n  dan C_n  untuk menjawab permasalahan bagaimana memperoleh matriks dengan sifat penjumlahan silang dengan mudah.
References
S. L. Hill, M. C. Lettington, and K. M. Schmidt, “On superalgebras of matrices with symmetry properties,†Linear Multilinear Algebr., 2017.
J. yu Shao and W. di Wei, “A formula for the number of Latin squares,†Discrete Math., 1992.
B. Bagchi, “Latin squares,†Resonance, 2012.
Z. ZHANG, “The Map, A New Method to Define Latin Square,†DEStech Trans. Environ. Energy Earth Sci., 2019.
N. J. Higham, M. C. Lettington, and K. M. Schmidt, “Integer matrix factorisations, superalgebras and the quadratic form obstruction,†Linear Algebra Appl., 2021.
H. Anton, Aljabar Linear Elementer, Edisi 5. Erlangga, 1987.
S. J. Leon, Linear Algebra with Applications Global Edition, 2015.
H. Anton and C. Rorres, Elementer Linear Algebra, Edisi 11, John Wiley and Sond, 2011.
D. Keedwell and J. Denes, Latin Square and Application. 2016.
J. T. E. Richardson, “The use of Latin-square designs in educational and psychological research,†Educ. Res. Rev., 2018.
T. S. Nurlaela and E. Sukaesih, “Rank dari Grup Dihedral Tiga (D3) yang Beraksi atas X^((1)),†Kubik: Jurnal Publikasi Ilmiah Matematika, vol. 2, no. 2, pp. 33–38, Nov. 2017, doi: 10.15575/kubik.v2i2.1858.
S. Nursyahida, S. Rana, and E. Sukaesih, “Vertex Labeled Energy of Edge-Removed Complete Graphs,†KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 8, no. 1, pp. 44–49, May 2023, doi: 10.15575/kubik.v8i1.30073.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors who publish in KUBIK: Jurnal Publikasi Ilmiah Matematika agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Â