SEIHR-SEI Mathematical Model of Zika Virus Transmission with Vector Control

Authors

  • Ichwal Afrizan Shiddiqie Departement of Mathematics, Universitas Islam Negeri Sunan Gunung Djati Bandung
  • Mia Siti Khumaeroh Departement of Mathematics, Universitas Islam Negeri Sunan Gunung Djati Bandung
  • Diny Zulkarnaen Departement of Mathematics, Universitas Islam Negeri Sunan Gunung Djati Bandung
  • Arista Fitri Diana Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

DOI:

https://doi.org/10.15575/kubik.v9i2.30948

Keywords:

Basic reproduction number, vector control, Lyapunov, sensitivity analysis, Zika virus

Abstract

Zika virus (ZIKV) is transmitted by Aedes Aegypti mosquito, which is recognized as a vector for viruses causing dengue fever and chikungunya. This study uses SEIHRâ€SEI mathematical model to analyze the dynamics of Zika virus transmission. In this model, human population (host) is classified into five compartments: Susceptible Humans (Sh), Exposed Humans (Eh), Infected Humans (Ih), Hospitalized Humans (Hh) and Recovered Humans (Rh). Meanwhile, the mosquito population (vector) is divide into three compartments: Susceptible Vectors (Sv), Exposed Vectors (Ev), and Infected Vectors (Iv). Stability analysis is conducted using Routhâ€Hurwitz criteria for assessing local stability and Lyapunov function for evaluating global stability. Moreover, Basic Reproduction Number (R0), which represents the average number of new infections produced by one infected individual in a susceptible population, is derived by using the Next Generation Matrix (NGM) method. The result shows that the equilibrium point for diseaseâ€free conditions is globally asymptotic stable when R0 < 1, meanwhile the equilibrium point for endemic conditions is stable when R0 > 1. The simulation result using endemic data and sensitivity analysis of three parameters, including contact rate between susceptible humans and infected humans (c), hospitalization rate of infected individuals (Ï„ ), and mosquito control rate (ω), reveals that c and ω exert a more significant effect on changes in R0 compared to Ï„ . Therefore, minimizing contact with infected individuals or implementing vector control is more effective than isolating or hospitalizing infected patients.

Author Biography

Mia Siti Khumaeroh, Departement of Mathematics, Universitas Islam Negeri Sunan Gunung Djati Bandung

References

F. B. Agusto, S. Bewick, and W. Fagan, “Mathematical model of zika virus with vertical transmission,†Infectious Disease Modelling, vol. 2, no. 2, pp. 244–267, 2017.

Aedes aegypti †Factsheet for experts, ecdc.europa.eu, https://www.ecdc.europa.eu/en/disease†vectors/facts/mosquitoâ€factsheets/aedesâ€aegypti, [Accessed 17â€08â€2024].

M. S. Khumaeroh, A. Firdaus, and A. S. Awalluddin, “Dengue transmission model with vector control in aquatic and nonâ€aquatic phases,†in AIP Conference Proceedings, AIP Publishing, vol. 3024, 2024.

D. S. Younger, “Epidemiology of zika virus,†Neurologic clinics, vol. 34, no. 4, pp. 1049–1056, 2016.

B. D. Anderson, E. J. Muturi, and P. Bendala, “Zika virus background,†Prairie Research Institute response team reports, 2016.

E. B. Hayes, “Zika virus outside africa,†Emerging infectious diseases, vol. 15, no. 9, p. 1347, 2009.

J. Olson, T. Ksiazek, et al., “Zika virus, a cause of fever in central java, indonesia,†Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 75, no. 3, pp. 389–393, 1981.

V. Wiwanitkit, “The current status of zika virus in southeast asia,†Epidemiology and Health, vol. 38, 2016.

European Centre for Disease prevention and Control (ECDC), Rapid risk assessment, 2015.

E. R. Krowâ€Lucal, B. J. Biggerstaff, and J. E. Staples, “Estimated incubation period for zika virus disease,†Emerging infectious diseases, vol. 23, no. 5, p. 841, 2017.

Centers for Disease Control and Prevention (CDC), Zika virus, 2019.

M. Imran, M. Usman, T. Malik, and A. R. Ansari, “Mathematical analysis of the role of hospitalization/isolation in controlling the spread of zika fever,†Virus research, vol. 255, pp. 95–104, 2018.

S. K. Biswas, U. Ghosh, and S. Sarkar, “Mathematical model of zika virus dynamics with vector control and sensitivity analysis,†Infectious Disease Modelling, vol. 5, pp. 23–41, 2020.

C. Ding, N. Tao, and Y. Zhu, “A mathematical model of zika virus and its optimal control,†in 2016 35th Chinese control conference (CCC), IEEE, 2016, pp. 2642–2645.

R. Isea and K. E. Lonngren, “A preliminary mathematical model for the dynamic transmission of dengue, chikungunya and zika,†arXiv preprint arXiv:1606.08233, 2016.

E. Kreyszig, K. Stroud, and G. Stephenson, “Advanced engineering mathematics,†Integration, vol. 9, no. 4, 2008.

M. Z. Ndii, Pemodelan matematika. Penerbit NEM, 2022.

M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2004, vol. 60.

E. Bonyah, M. A. Khan, K. Okosun, and S. Islam, “A theoretical model for zika virus transmission,†PloS one, vol. 12, no. 10, e0185540, 2017.

S. Liu, D. Liberzon, and V. Zharnitsky, “Almost lyapunov functions for nonlinear systems,†Automatica, vol. 113, p. 108 758, 2020.

F. Ilahi, M. S. Khumaeroh, et al., “Analisis sensitivitas dan kestabilan global model pengendalian tuberkulosis dengan vaksinasi, latensi dan perawatan infeksi,†KUBIK: Jurnal Publikasi Ilmiah

Matematika, vol. 6, no. 2, pp. 85–97, 2021.

P. Zhou, X. Hu, Z. Zhu, and J. Ma, “What is the most suitable lyapunov function?†Chaos, Solitons

& Fractals, vol. 150, p. 111 154, 2021.

M. S. Khumaeroh, M. A. Shalehah, and F. Ilahi, “Mathematical model of leukemia treatment with chimeric antigen receptor (car) t cell therapy,†Mathline: Jurnal Matematika dan Pendidikan

Matematika, vol. 8, no. 3, pp. 1077–1090, 2023.

N. Nurhalimah, F. Ilahi, and E. R. Wulan, “Analisis kestabilan model matematika sia (susceptible, infected, aids cases) untuk penyakit aids,†KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 3, no. 1, pp. 83–87, 2018.

Downloads

Published

2024-09-21