Problem-Based Learning with Multilevel Representation: A Strategy to Master the Ionic Equilibrium in Solution Concepts

Abdul Hamid(1), Nur Hikmah(2), Arif Sholahuddin(3*)

(1) Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjen H. Hasan Basry, Banjarmasin, 70123, Indonesia
(2) Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjen H. Hasan Basry, Banjarmasin, 70123, Indonesia
(3) Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat, Jl. Brigjen H. Hasan Basry, Banjarmasin, 70123, Indonesia
(*) Corresponding Author


Mastery of abstract chemistry concepts requires learning strategies to facilitate students to make mental imagery to the submicroscopic level. This study aims to analyze the differences in students' mastery of the ionic equilibrium in salt solutions concept by applying the Problem-Based Learning (PBL) model with multilevel representation. The study applied a quasi-experimental method with a pretest-posttest non-equivalent control group design. The research samples were 61 students of natural science 11th grade SMAN 6 Banjarmasin, which were determined by random cluster sampling. This test instrument is in the form of reasoned-multiple choice with a Content Validity Ratio (CVR) score of 1 (valid), reliability score of 0.96 (very high), difficulty index is moderate to difficult, distinguishing power is moderate to good, and sensitivity item is a sensitive category. Data were analyzed inferentially using an unpaired ttest. This research found that the PBL model with multilevel representation increased the students’ thinking ability at Higher Order Thinking Skills (HOTS) levels. The student's mastery of the ionic equilibrium in salt solutions concept learned by using the PBL model with multilevel representation was better than by using the PBL model.


ionic equilibrium in solution; multilevel representation; PBL model

Full Text:



Arends, R. I. (2012). Learning to Teach. New York: Mc. Graw-Hill Companies.

Arikunto, S. (2018). Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.

Azzajjad, M. F., Ahmar, D. S., & Syahrir, M. (2020). The effect of animation media in discovery learning model on students’ representation ability on chemical equilibrium materials. Journal of Applied Science, Engineering, Technology, And Education, 2(2), 204-209.

Barke, H-D, Harsch G, & Schmid S. (2012). Essentials of Chemical Education. Verlag Berlin Heidelberg: Springer.

Boncel, W., Enawaty, E., & Sartika, R. P. (2017). Deskripsi kesalahan siswa dalam menyelesaikan soal-soal hidrolisis garam di kelas XI IPA SMA Katolik Talino. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 6(12), 1-7. retrieved from

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students' ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293-307.

Chen, X., de Goes, L. F., Treagust, D. F., & Eilks, I. (2019). An analysis of the visual representation of redox reactions in secondary chemistry textbooks from different chinese communities. Education Sciences, 9(1), 42.

Cindiana, D., Hairida, & Ulfah, M. (2020). Deskripsi kemampuan peserta didik menyelesaikan soal HOTS materi hukum dasar kimia SMA Negeri Pontianak. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 9(3), 1-9. Retrieved from 91.

Cohen, R. J & Swerdlik, M. E. (2010). Psychological Testing and Assessment: An Introduction to Test and Measurement. (7th Ed.). New York, NY: McGraw Hill.

Darmiyanti, W., Rahmawati, Y., Kurniadewi, F., & Ridwan, A. (2017). Analisis model mental siswa dalam penerapan model pembelajaran Learning Cycle 8E pada materi hidrolisis garam. Jurnal Riset Pendidikan Kimia, 7(1), 38-51.

Demirdöğen, B. (2017). Examination of chemical representations in Turkish high school chemistry textbooks. Journal of Baltic Science Education, 16(4), 472-499.

Desriyanti, R. D., & Lazulva. (2016). Penerapan Problem Based Learning Pada Pembelajaran Konsep Hidrolisis Garam Untuk Meningkatkan Hasil Belajar Siswa. Jurnal Tadris Kimiya, 1(2), 70-78.

Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12, 5-14.

Gkitzia, V., Salta, K., & Tzougraki, C. (2020). Students’ competence in translating between different types of chemical representations. Chemistry Education Research and Practice, 21(1), 307-330.

Gündüz, A. Y., Alemdağ, E., Yaşar, S. & Erdem, M. (2016). Design of a Problem-Based Online Learning Environment and Evaluation of its Effectiveness. The Turkish Online Journal of Educational Technology, 15(3), 49-57. Retrieved from

Hake, R. R. (2002) Relationship of individual student normalized learning gains in mechanics with gender, high-school physics, and pretest scores on mathematics and spatial visualization. Physics education research conference. 8(1), 1-14. Retrieved from

Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54.

Ibrahim, M., & Jamaludin, K. A. (2019). The roles of teacher and students via blended problem-based learning: Improving students mastery of three representation levels of chemistry. EDUCATUM Journal of Science, Mathematics and Technology, 6(2), 9-21.

Jaber, L. Z., & BouJaoude, S. (2012). A macro-micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973-998.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

Kelly, R. M., Barrera, J. H., & Mohamed, S. C. (2010). An analysis of undergraduate general chemistry students’ misconceptions of the submicroscopic level of precipitation reactions. Journal of Chemical Education, 87(1), 113-118.

Khaldun, I., Hanum, L., & Utami, S. D. (2019). Pengembangan soal kimia higher order thinking skills berbasis komputer dengan wondershare quiz creator materi hidrolisis garam dan larutan penyangga. Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), 7(2), 132-142.

Kiswandari & Ridwan, A. (2020). Analysis of students' mental models through POE (predict observe explain) method in salt hydrolysis topic. Jurnal Tadris Kimiya, 5(1), 80-90.

Kurnaz, M. A., & Arslan, A. S. (2014). Effectiveness of multiple representations for learning energy concepts: a case of Turkey. Procedia Social and Behavioral Sciences, 116, 627-632.

Mahaputra, A. H., Martiningsih, N. G. A. G. E., & Javandira, C. (2016). Pengaruh Pemberian Pupuk Za Terhadappertumbuhan Dan Hasiltanaman Sawi (brassisca Juncea L.). Agrimeta, 6(11), 89896. Retrieved from

Martiasari, Y., Abidin, Z., & Lismaya, L. (2016). Penerapan model pembelajaran problem based learning berbasis multi representasi terhadap pemahaman konsep siswa. Quagga: Jurnal Pendidikan dan Biologi, 8(2), 10-18. Retrieved from

Milenkovic, D. D., Segedinac, M. D., & Hrin, T. N. (2014). Increasing high school students chemistry performance and reducing cognitive load through an instructional strategy based on the interaction of multiple levels of knowledge representation. Journal of Chemical Education, 91(9),1409-1416.

Nahadi, N., Firman, H., & Kurniadi, H. (2018). Development and validation of chemistry virtual test based multiple representations. Journal of Education and Learning, 12(1), 44-51.

O’Keefe, P. A., Letourneau, S. M., Homer, B. D., Schwartz, R. N., & Plass, J. L. (2014). Learning from multiple representations: an examination of fixation patterns in a science simulation. Computers in Human Behavior, 35, 234-242.

Oliver-Hoyo, M., & Babilonia-Rosa, M. A. (2017). Promotion of spatial skills in chemistry and biochemistry education at the college level. Journal of Chemical Education, 94(8), 996-1006.

Pavlin, J., Glazˇar, S. A., Slapnicˇar, M., & Devetak, I. (2019). The impact of students' educational background, interest in learning, formal reasoning and visualisation abilities on gas context-based exercises achievements with submicro-animations. Chemistry Education Research and Practice, 20, 633-649.

Purwanto, N. (2002). Prinsip-Prinsip dan Tehnik Evaluasi Pengajaran. Bandung: Remaja Rosdakarya.

Rahmawati, T., Utami, L. & Refelita, F. (2019). Perbandingan model problem based learning dan inkuiri terbimbing terhadap keterampilan berpikir kritis siswa. Jurnal Tadris Kimiya, 4(1), 21-32.

Rakhmawan, A., Firman, H., Redjeki, S., & Mulyani, S. (2018). Contribution of logical thinking ability to students achievement in three level ofrepresentations in chemical dynamic materials. Jurnal Penelitian dan Pembelajaran IPA, 4(2), 116-126.

Santos, V. C., & Arroio, A. (2016). The representational levels: Influences and contributions to research in chemical education. Journal of Turkish Science Education, 13(1), 3-18. Retrieved from

Savitri, R. W., Susilaningsih, E., & Harjono. (2019). Analisis ketercapaian kompetensi pengetahuan peserta didik melalui pembelajaran Predict, Observe, Explain. Jurnal Inovasi Pendidikan Kimia, 13(2), 2395-2403. Retrieved from

Sholahuddin, A. (2015). In-depth learning by exploring the local science issues through @UnESa-GaIn strategy. Banjarmasin: Wahana Jaya Abadi. Retrieved from

Sugiyono. (2018). Metode penelitian kuantitatif, kualitatif dan R&D. Jakarta: Alfabeta.

Sunyono, S., & Meristin, A. (2018). The effect of multiple representation-based Learning (MRL) to increase students' understanding of chemical bonding concepts. Jurnal Pendidikan IPA Indonesia, 7(4), 399-406.

Sunyono, S., & Sudjarwo, S. (2018). Mental Models of Atomic Structure Concepts of 11th Grade Chemistry Students. Asia-Pacific Forum on Science Learning and Teaching 19(1). Retrieved from

Sunyono, S., Yuanita, L., & Ibrahim, M. (2015). Mental models of students on stoichiometry concept in learning by method based on multiple representation. The Online Journal of New Horizons in Education (TOJNED), 5(2), 30-45. Retieved from

Tima, M. T., & Sutrisno, H. (2018). Effect of using problem-solving model based on multiple representations on the students' cognitive achievement: Representations of chemical equilibrium. Asia-Pacific Forum on Science Learning & Teaching 19(1).

Treagust, D. F. (2018). Education research highlights in mathematics, science and technology: The importance of multiple representations for teaching and learning science. Iowa State University: ISRES. Retrieved from

Wicaksono, A. T. (2016). Tinjauan pemahaman konsep larutan asam dan basa pada tingkat makroskopik dan tingkat mikroskopik siswa kelas XI IPA SMA Negeri 1 Batu. Jurnal Tarbiyah (Jurnal Ilmiah Kependidikan), 5(2), 1-6.

Wiyarsi, A., Sutrisno, H., & Rohaeti, E. (2018). The effect of multiple representation approach on students’ creative thinking skills: A case of ‘Rate of Reaction’topic. Journal of Physics: Conference Series 1097(1), 012054. IOP Publishing. Retrieved from

Yakmaci-Guzel, B., & Adadan, E. (2013). Use of multiple representations in developing preservice chemistry teachers understanding of the structure of matter. International Journal of Environmental & Science Education, 8(1), 109-130. Retrieved from



  • There are currently no refbacks.

Copyright (c) 2022 Arif Sholahuddin

Journal  Tadris Kimiya Is Indexed By : 

Lisensi Creative Commons

Pendidikan Kimia: Jurnal Tadris Kimiya  dilisensikan dengan Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0Hak cipta dilindungi undang-undangp-ISSN: 2527-6816 | e-ISSN: 2527-9637